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Use of Linux in embedded systems has become vastly popular. On hardware 
platforms, the ARM processor cores have a strong foothold. To address the needs of 
Linux-based embedded automation systems, Wapice has implemented custom high-
performance CAN driver architecture. The Wapice Custom Can Driver (WCCD) is 
targeted for embedded Linux and optimized for ARM-based platforms. In this paper, 
we present our findings made during the development process and methods we used 
to optimize the driver performance. Performance measurements, comparing the 
effects of optimizations, are also presented. We discuss how CAN message buffering 
algorithms affect the bus performance, show how Linux kernel version affects the 
interrupt latencies, and present challenges related to SPI-based CAN transceiver chip 
usage. To evaluate our design, we present the performance of Wapice Custom CAN 
driver (CPU load, CANmsg/s) and compare it against SocketCAN and LinCAN 
implementations. We also show results of a brief study on porting WCCD to other 
processor platform. Based on the results, we conclude that WCCD is an extremely 
high-performance embedded Linux CAN driver which can match or outperform the 
compared existing implementations. 

 
1. Introduction 

Linux has taken a strong foothold in 
embedded systems during the last decade. 
The emergence of real-time Linux variants 
and patches have made Linux attractive for 
embedded automation systems [1]. The real-
time challenges also effect driver 
development [2], including the CAN-bus 
driver, one of the key communication 
interfaces in embedded automation. 

The CAN-bus and the short frame lengths of 
the protocol create demanding requirements 
for the implementation of the CAN-bus node. 
The minimum CAN frame length is 47 bits 
[3]. To achieve reliable operation, each node 
should be able to handle frame reception 
within 47 us. It is the shortest CAN frame 
duration when the bus speed is 1Mbit/s. This 
means that each bus node should be able to 
handle up to 21277 received CAN frames 
per second. When this requirement is 
combined with modern operating system 
architecture such as Linux and ARM core 
processor platform, unique challenges are 
set to the application and the device driver 
architecture.  

1.1. Related work 

The most commonly used Linux device 
driver is SocketCAN, which is included in 
Linux mainline kernel [4]. SocketCAN is built 
on standard Linux networking infrastructure, 
making it easy to use for developers familiar 
with TCP/IP. As Linux networking 
infrastructure is designed for high volume 
data transmission optimizing throughput, this 
implementation approach does not yield 
optimal results in low-latency, low-
throughput embedded CAN systems. 

LinCAN, a project started at Czech 
Technical University of Prague, has been 
designed with emphasis on strict real-time 
properties and reliability [5]. It is a versatile 
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driver which has also been ported to various 
platforms and is available as open source 
code. It is implemented as a Linux character 
device driver. A downside with the LinCAN 
vs. SocketCAN has been the lack of a 
common API. As a solution, a SocketCAN 
compatible VCA (Virtual CAN API) has been 
proposed and implemented [5]. LinCAN is 
not included in Linux mainline kernel. 

LinCAN was developed to address the RT-
performance drawbacks of SocketCAN, and 
as such has similar goals to our work. The 
developers of LinCAN have compared their 
driver performance to SocketCAN in [5], 
which is closely related to the work 
presented in this paper. 

1.2. Background and goals 

Our work was inspired by the development 
of a CAN-over-Ethernet gateway device [6], 
a configurable platform for real-time 
monitoring applications. It used a proprietary 
CAN-based protocol with high CAN-bus 
frame rate of over 8000 messages per 
second.  The gateway device has an Atmel 
AT91 SAM9260 microcontroller with ARM 
926EJ-S core running at 180 MHz. CAN-bus 
interface is implemented with Microchip 
MCP2515 CAN controller. The 
microcontroller communicates with the CAN 
controller through Serial Peripheral Interface 
(SPI) bus.  

The gateway device used SocketCAN as its 
original CAN driver implementation and 
publicly available MCP2515 device driver. 
The driver was later merged into the 2.6.33 
kernel. The work progressed in three 
phases. At first, the platform and device 
driver optimizations were applied to the 
SocketCAN driver. Even with full platform 
optimizations the performance requirements 
of the application were not met. In the 
second phase, the LinCAN driver was ported 
to the gateway device. Performance was 
compared, but also LinCAN couldn’t match 
the performance requirements. This led to 
the design of the Wapice Custom CAN 
Driver (WCCD).  It uses the same platform 
and CAN chip device driver optimizations 
but specifically addresses the problems in 
the CAN message buffering. It also 
optimizes the interface between the kernel 
space and the user space application.  The 

following design constrains were defined for 
the WCCD.  

• The driver architecture should have high 
performance and it should handle full 
theoretical CAN message rate. 

• It should consume as little as possible of 
the CPU time. 

• It should minimize the messages lost due 
to HW buffer overflow situations. 

 
The following aspect in the driver design 
was not considered important: 

• Ability to read CAN messages from 
multiple user space threads. 

We studied the previously mentioned CAN 
driver alternatives and present an optimized 
driver implementation, measure and 
evaluate its performance, and discuss the 
drawbacks with our chosen optimizations. 
The following Section 2 presents common 
optimization methods that can be applied. 
Section 3 presents our driver architecture 
and the applied optimizations. The 
performance of the driver was compared 
against the SocketCAN and the LinCAN 
drivers. These results are presented in 
Section 4. This is followed by Conclusions 
and ending with discussion based on the 
results in Section 6. 

2. Optimization methods 

 

We have identified five critical 
implementation areas: Interrupts, direct 
memory access (DMA), inlining, use of locks 
and branch hints. 
 
2.1. Interrupts 

Interrupts can cause a significant amount of 
CPU load to the system if the interrupt rate 
is high. Each interrupt results in at least one 
context save and reload procedure. In 
traditional Linux systems, the interrupt 
service routine (ISR) schedules the 
occurring interrupts inside the interrupt task 
context. Normally, the ISR is also divided to 
top and bottom halves. The bottom half is 
signaled from the interrupt thread context.  

In a preempt-RT Linux, interrupts are 
normally run in their own thread context. The 



benefit of threaded interrupts is that they can 
be prioritized. In addition, the preempt-RT 
Linux provides a mechanism to run ISR’s in 
the interrupt context.  

Due to the amount of context switches 
needed in the Linux architecture, the 
frequency of interrupts should be minimized 
and possible code paths should be made as 
short as possible for optimum performance. 
They introduce latency to the system. 

2.2. DMA 

Most modern CPU’s allow memory transfer 
operations to be offloaded from the CPU to 
DMA engine, which can be used to move 
data between memory locations and 
peripheral devices. Normally an interrupt is 
generated when a DMA transfer has 
completed. Using the DMA engine, an 
application can perform other operations 
while memory content is transferred. 

Use of DMA requires platform dependent 
code to allow DMA buffers to remain 
coherent throughout transactions. Platform 
itself defines where DMA buffering can be 
used. 

2.3. Inlining 

Generally, it is good to have functions to 
separate functionalities and to reduce the 
amount of program code. However, every 
function call causes several register writes 
on target CPU. This is not an issue on 
functions which are called only a few times, 
but for functions that are called several 
thousands of times a second, the amount of 
time spent accumulates. When a function is 
inlined, the function call is replaced with the 
content of your function. It will increase the 
size of your final binary, but it can speed it 
up moderately. 

GCC, a popular Linux compiler, only takes 
the inline keyword as a hint, which may not 
be taken into account. Functions can be 
forced to be inlined regardless of the 
optimization level by setting a special 
attribute. The attribute is defined after the 
function name like this: 

inline int YourFunction(void) 
__attribute__((always_inline)); 

2.4. Use of locks 

In all multi-threaded systems some kind of 
mutual exclusion mechanism is needed to 
ensure validity of the shared data. Operating 
systems usually provide mutexes, 
semaphores, spinlocks and critical sections 
for this purpose. Usage of these 
mechanisms can be relatively CPU time 
expensive.  Alternatively an atomic operation 
support can be used to implement simple 
synchronization between threads and 
interrupts. Linux OS provides a platform 
dependent atomic API that is available for 
many CPU platforms. This API can be used 
to implement efficient algorithms and to 
synchronize data between threads.  

The ARMv5 CPU core architecture used on 
our target processor does not provide CPU 
instruction set support for the 
implementation of the atomic API. Instead, 
the implementation uses short critical 
sections where interrupt are blocked.  

2.5. Branch hints 

If the CPU execution jumps to a branch that 
the CPU branch prediction logic has not 
been able to predict, the CPU instruction 
pipeline has to be flushed. Flushing can 
cause a delay of several clock cycles. It is 
advisable at the source code level to provide 
hints for the compiler when there is strong 
probability of certain condition with a 
compiler keyword. GCC provides 
mechanism for static source code level 
branch prediction hints. This allows the code 
to be organized so that in the more likely 
code path the execution is linear. Linux 
kernel provides preprocessor macros likely() 
and unlikely() to control the branch 
prediction. 

3. Linux CAN device driver implementation 

In general, a device driver is a software 
component which provides access to a HW 
resource (device). From the main operation 
viewpoint a low-level communication 
peripheral driver such as CAN device driver 
has three main tasks: receive, transmit and 
media/bus control. In addition, the device 
driver has operating system dependent 
functionalities. Implementation of receive 
and transmit operations define the practical 



driver performance: latency and throughput. 
For our driver design, the main goal was to 
obtain high-performance buffer read and 
write operations. 

To obtain high performance, we made the 
following design decisions, for which 
reasoning is given later: 

• Implement driver as character device. 

• Interrupt service routine (ISR) should 
never have to wait while adding CAN 
frames to the buffer. 

o ISR operation can never be interrupted 
by the character device reading the 
buffer. No operation is done while ISR 
is using the buffer. 

o Character device’s buffer operation 
can be interrupted at any moment by 
the CAN ISR. 

• Multiple CAN frames can be read at once. 

• One-way communication in reception; 
ISR adds CAN frames and character 
device reads them from the buffer. 

• Received CAN frames are overwritten by 
new frames if no more free space is 
available in the buffer. 

The character device driver implementation 
principle is presented in Figure 1. IOCTL is 
used to set read timeout, bitrate and other 
configuration options. Timer counter 
interrupt is used to schedule buffer reads. 
The architecture of WCCD is shown in 
Figure 2. 

3.1. Platform resources 

The MCP2515 has two CAN message 
reception buffers with rollover support. Thus 
2-stage primitive HW FIFO is possible [7].  
After the reception of the first message (First 
buffer is full), the MCP2515 will generate a 
CPU interrupt. In the worst case situation, 
this gives 2*47 us theoretical minimum for 
the CPU to service the interrupt and read the 
message through SPI before an HW buffer 
overflow can occur. 

The time to handle a CAN message 
reception can be divided to following 
phases; ISR latency, the SPI transaction 
time and the software overhead in the 
interrupt service routine.  

3.2. Performed platform optimizations  

The interrupt latency in the system has been 
optimized by using Preempt-RT patched 
kernel. The Preempt-RT patch moves 
normal ISR routines to tasks, which provides 
better priorization between interrupts and 
overall interrupt latency.  The 
IRQF_NODELAY flag provided by the 
Preempt-RT framework was used to 
prioritize the MCP2515 CAN ISR and thus 
the CAN message handling over all the 
other functionalities in the system. Different 
kernel versions were tested and the effects 
of the kernel versions to the ISR latency are 
displayed in Table 1. 

 

Figure 2. WCCD architecture on ARM platform using an 
external SPI CAN-controller (MPC2515). 

 

Table 1. Kernel version effect on ISR latency. 

 Min 
(us) 

Avg 
(us) 

Max 
(us) 

Max - 
USB (us) 

2.6.29.6-rt24 8,2 13 108 131 

2.6.31.12-rt20 9,2 13,9 115,6 125 

2.6.29.6 5,7 10,4 77 6727 

2.6.31.12 7,6 11,4 88,1 6572 

 

 

Figure 1. Receive buffer implementation. 
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The interrupt latency has been measured by 
initializing a CPU peripheral timer interrupt to 
be performed in the overflow situation. The 
free running counter of the timer is sampled 
in the ISR and the interrupt latency is 
calculated from the value of the free running 
counter. Over 2000 interrupts were sampled 
to get the results for the interrupt latencies. 
During the test, 10 user space threads were 
running with 100 % CPU utilization. The 
Max-USB results demonstrate the interrupt 
latency during the insertion of USB memory 
stick and mounting of the FAT file system. 
From the results we can conclude that the 
non-preempt-RT systems can provide better 
average latency but they fail to perform 
deterministically under some operating 
situations. Also, the maximum measured 
latency indicates that it is impossible to 
guarantee no loss of CAN frames, because 
the maximum interrupt latency should be 
less than two CAN frame transmission times 
(MCP2515 has two reception buffers). 

3.2.1. PIO optimizations 

In the hardware platform used, the 
MCP2515 interrupt line is connected to the 
Parallel Input/Output (PIO) controller of the 
Atmel AT91SAM9260 microcontroller. The 
PIO controller can be configured to give 
interrupts from the PIO pin status changes. 
In the AT91 Linux port, the PIO controller 
interrupts are handled in the different code 
path than other interrupts. The PIO interrupt 
handling was optimized by replacing the 
loop through the PIO_ISR status flags with 
instructions that resolve the first bit set in the 
word. 

3.2.2. MCP2515 interrupt handling 

optimizations 

The interrupt service routine of the 
MCP2515 was optimized heavily. Normal 
micro optimization and static branch 
prediction techniques were used in this 
critical code. Also function inlining was used 
heavily. Logic for the ISR was implemented 
to disable further interrupt requests from the 
MCP2515 while executing the ISR. At the 
end of the ISR routine the PIO pin, normally 
used as the interrupt pin, is polled in the 
digital input mode to check if the MCP2515 
is still trying to interrupt the processor. With 
PIO polling, a possible second interrupt can 

be serviced without unnecessary ISR 
generation. Depending on the CAN 
message length, message transmission 
timing and interrupt latencies; this method 
can significantly reduce the interrupts from 
MCP2515. 

3.2.3. DMA optimizations 

The data transfer to and from the MCP2515 
is implemented using the SPI-bus. The 
AT91SAM9260 supports DMA transfer from 
the SPI peripheral device receive and 
transmit buffers directly to the memory of the 
CPU. The original MCP2515 driver utilized 
the kernel’s DMA buffer allocation 
dma_alloc_coherent()–API and the 
spi_message_init() interface. In the target 
platform, this results in a DMA buffer 
mapping for each SPI transaction. According 
to our measurements, a more efficient way 
is to use the streaming DMA mapping API 
provided by the kernel. In this 
implementation, the kernel provides API for 
the DMA buffer synchronization: the 
dma_sync_single_for_cpu() –function is 
called to ensure the data in the buffer can be 
used by the CPU. Before data in the transfer 
buffer is started again, the 
dma_sync_single_for_device() –function 
must be called to give the ownership of the 
buffer back to DMA engine. This also 
ensures the data has been flushed from the 
cache to the memory before the transfer is 
started. According to our measurements, the 
DMA buffer handling optimization saved 16 
us from each receive message interrupt. 

3.2.4. SPI handling optimizations 

The MCP2515 has an SPI interface with 
maximum SPI clock frequency of 10 MHz 
[7]. For the receive messages, the most 
efficient way to service the MCP2515 
interrupt requires two SPI transfers. First, 
the CANITF register is read. The second 
transfer reads the message buffer content. 
An SPI transfer requires 3+14 = 17 bytes of 
data to be transferred through the SPI 
interface. With 10 Mhz clock, the theoretical 
minimum for SPI traffic is 13.6 us. The AT91 
Linux kernel SPI implementation for the 
MCP2515 usage was optimized by inlining 
the code manually in the MCP2515 ISR. 
Additionally, the SPI implementation was 
modified to not to generate interrupts; 



instead the SPI peripheral is polled for the 
transfer completion from the status flag of 
SPI peripheral. The current implementation 
is MCP2515 specific. It would be possible to 
create a generic AT91 SPI driver which 
would provide generic purpose SPI 
functionality with the same benefits for the 
short SPI transactions assuming that 
completion polling is shorter than the 
interrupt latency.  

3.3. Receive buffer implementation 

CAN driver receive buffers are usually 
implemented as ring buffers. They require 
lock mechanisms during read/write 
operations: new data cannot be added to the 
buffer while it is being read. This can 
increase receive latency. 

The receive buffer for the CAN message 
reception was implemented using a single 
writer single reader non-blocking algorithm 
utilizing the Atomic API. This approach 
minimizes the usage and length of the 
critical sections and the priority inversion 
with user space process and the ISR. 

3.4. Transmit buffer implementation 

The CAN frame write operation in WCCD is 
implemented with asynchronous I/O.  The 
write operation copies the CAN message 
data to the internal circular buffers. Driver 
handles internally the pointers to the head 
and tail of the buffer. 
 
As a general note, sending as many 
messages as possible at once reduces the 
amount of switches between user-space and 
kernel, and improves the performance. 

3.5. Driver usage 

At driver API level, read & write is  
performed using a 20-byte data structure 
representing CAN frame data to ensure 
minimum CPU load. If less than full CAN 
frame is to be sent, the data size field is set 
to indicate the amount of data and unused 
data fields are left blank. Only one thread 
can read from the device file at any given 
time. 

The device read function blocks until a 
specific timeout occurs. This enables the 
driver to receive multiple frames and return 

them to user space with one read() system 
call. The timeout can be set by the user with 
IOCTL–function. 

3.6. Port to PowerPC 

As the receive buffer implementation didn’t 
have platform dependencies, we ported it to 
a PowerPC based platform previously using 
SocketCAN. The major difference between 
the platforms was the internal CAN 
peripheral vs. the SPI CAN controller used in 
the ARM platform. 

4. Results 

The following sections present our 
performance measurement results. Majority 
of the measurements vere performed on the 
ARM core platform. For comparison, we 
ported part of the driver stack to PowerPC, 
and repeated CPU load and receive latency 
measurements on it. 

4.1. ARM platform 

The ARM implementation results were 
obtained with Atmel AT91SAM9260-based 
hardware running custom Linux kernel 
version 2.6.29.6-rt24. SocketCAN 
comparisons were made with version dated 
21.8.2009 and LinCAN measurements with 
version 0.3.4 (March-2009). These were the 
version available at the start of this work. 
The WCCD measurements were made with 
WCCD version 2.2.0.  

Figure 3 shows CPU load when receiving 
CAN frames at different frame rates. Figure 
4 shows similar CPU load when sending 
echo messages to another device. As can 
be seen from both the figures, WCCD load 
on CPU is significantly lower. To review the 
sources of receive latency, Figure 5 shows 
the CAN ISR execution time for reception.  

Figure 6 shows CPU load on transmit. 
Again, WCCD load is significantly lower. We 
also measured CAN message transmit 
latencies for WCCD, which are listed in 
Table 2. The measurements were performed 
at 1 Mbit and 250 kbit bus modes. First 
column shows time from userspace 
application write call to data on bus. Second 
column shows the same measurement for 
driver only. The third column lists the time 



for the driver when three frames are written 

to the bus.  

4.2. PowerPC platform 

For comparison, we ported our CAN driver 
receive stack to a Freescale MPC5200B 
PowerPC-based platform. This was done to 
verify that the receive buffer optimizations 
were not platform dependent. Linux kernel 
version for the device was 2.6.23.1 with 
somewhat older SocketCAN revision 454 
(3.8.2007). The IPB-bus used by MSCAN 
peripheral was set to 66 MHz. 

Figure 7 is similar to ARM measurement 
Figure 5, and compares CAN receive ISR 
execution time with normal SocketCAN and 
with WCCD receive buffer implementation. 
Figure 8 shows the CPU load with different 
receive rates at 1 Mbps bus speed. 

5. Conclusions 

Our measurements show that the proposed 
implementation has significantly lower CPU 
load both on transmit and receive 
operations. In addition, receive interrupt 
execution time is notably shorter and 
transmit latencies are very short. The 
measurements have been partly verified on 
another processor platform with similar 
results. We conclude that WCCD is highly 
optimal CAN driver for applications requiring 
low-latency and low CPU-load. The 
implemented optimizations propose some 
limitations to the driver use. 

6. Discussion 

The WCCD driver architecture performs 
significantly better than the standard 
solutions in high bus load environments, 
especially on CPU platforms with limited 
resources. For the ARM-based gateway 
device implementation, we have been able 
to achieve nearly lossless CAN message 

 

Figure 4. CPU load on echo. 
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Figure 3. CPU load on receive. 
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Figure 5. CAN receive ISR execution time (us). Other 

includes  mcp2515, SPI, DMA and AT91 code. 
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Figure 6. Measured CPU load when transmitting 1000 
frames/s. 
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reception that was impossible with 
SocketCAN or LinCAN drivers. We have 
also tested the driver’s performance with 
extremely high bus loads and have been 
able to receive over 20000 CAN messages 
per second. To achieve this, we had to make 
significant amount of optimizations also to 
the platform and low-level driver code 
outside of the CAN driver framework. But as 
the evaluation of the executed performance 
measurements show, the usage of the 
WCCD driver architecture provides clear 
benefits over alternative CAN driver 
implementations. 

As the usage of the Linux for the demanding 
CAN-bus systems increases, it seems 
justifiable to create a custom CAN driver 
architecture and optimize the platform code 
for a specific purpose to achieve reliable 
operation. 

The biggest downside for the usage of the 
WCCD is the lack of a standard interface. 
Standard software cannot be used with it 
without porting it to the WCCD driver API. 
However, embedded systems applications 
are often proprietary and developed to some 
specific purpose. 

As mentioned before, the reading of data 
from two or more threads or processes is not 
currently supported. Adding multithreaded 
(and multiprocess) read, would roughly 
double the time it currently takes to write to 
the receive buffer. However, writing data 
from multiple threads to the device driver is 
supported. 

The platform optimizations made for AT91 
Linux port have not been sent to the Linux 
community as the changes are highly board 
specific and would require further work to 
make them more generic. The SPI 
optimizations made to support the usage 
from hard interrupt context would probably 
benefit many projects. However, this would 
require major work in the whole SPI 
subsystem of the kernel.  
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Figure 7. CAN receive ISR execution time (us). Tasks 
listed in execution order (earliest at bottom). 
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Figure 8. CPU load on CAN receive, PowerPC platform.  
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