
Design of High-Performance CAN Driver Architecture for

Embedded Linux

Sakari Junnila, Risto Pajula, Mickey Shroff, Teemu Siuruainen, Marek Kwitek, Pasi Tuominen,

Wapice Ltd.

Use of Linux in embedded systems has become vastly popular. On hardware
platforms, the ARM processor cores have a strong foothold. To address the needs of
Linux-based embedded automation systems, Wapice has implemented custom high-
performance CAN driver architecture. The Wapice Custom Can Driver (WCCD) is
targeted for embedded Linux and optimized for ARM-based platforms. In this paper,
we present our findings made during the development process and methods we used
to optimize the driver performance. Performance measurements, comparing the
effects of optimizations, are also presented. We discuss how CAN message buffering
algorithms affect the bus performance, show how Linux kernel version affects the
interrupt latencies, and present challenges related to SPI-based CAN transceiver chip
usage. To evaluate our design, we present the performance of Wapice Custom CAN
driver (CPU load, CANmsg/s) and compare it against SocketCAN and LinCAN
implementations. We also show results of a brief study on porting WCCD to other
processor platform. Based on the results, we conclude that WCCD is an extremely
high-performance embedded Linux CAN driver which can match or outperform the
compared existing implementations.

1. Introduction

Linux has taken a strong foothold in
embedded systems during the last decade.
The emergence of real-time Linux variants
and patches have made Linux attractive for
embedded automation systems [1]. The real-
time challenges also effect driver
development [2], including the CAN-bus
driver, one of the key communication
interfaces in embedded automation.

The CAN-bus and the short frame lengths of
the protocol create demanding requirements
for the implementation of the CAN-bus node.
The minimum CAN frame length is 47 bits
[3]. To achieve reliable operation, each node
should be able to handle frame reception
within 47 us. It is the shortest CAN frame
duration when the bus speed is 1Mbit/s. This
means that each bus node should be able to
handle up to 21277 received CAN frames
per second. When this requirement is
combined with modern operating system
architecture such as Linux and ARM core
processor platform, unique challenges are
set to the application and the device driver
architecture.

1.1. Related work

The most commonly used Linux device
driver is SocketCAN, which is included in
Linux mainline kernel [4]. SocketCAN is built
on standard Linux networking infrastructure,
making it easy to use for developers familiar
with TCP/IP. As Linux networking
infrastructure is designed for high volume
data transmission optimizing throughput, this
implementation approach does not yield
optimal results in low-latency, low-
throughput embedded CAN systems.

LinCAN, a project started at Czech
Technical University of Prague, has been
designed with emphasis on strict real-time
properties and reliability [5]. It is a versatile

Sakari Junnila, Risto Pajula,
Mickey Shroff, Teemu Siuruainen,
Marek Kwitek and Pasi Tuominen
Wapice Ltd
Yliopistonranta 5, 65200 Vaasa
Tel. +358 6 319 4000
Fax +358 6 319 4001
{firstname.lastname}@wapice.com
www.wapice.com

driver which has also been ported to various
platforms and is available as open source
code. It is implemented as a Linux character
device driver. A downside with the LinCAN
vs. SocketCAN has been the lack of a
common API. As a solution, a SocketCAN
compatible VCA (Virtual CAN API) has been
proposed and implemented [5]. LinCAN is
not included in Linux mainline kernel.

LinCAN was developed to address the RT-
performance drawbacks of SocketCAN, and
as such has similar goals to our work. The
developers of LinCAN have compared their
driver performance to SocketCAN in [5],
which is closely related to the work
presented in this paper.

1.2. Background and goals

Our work was inspired by the development
of a CAN-over-Ethernet gateway device [6],
a configurable platform for real-time
monitoring applications. It used a proprietary
CAN-based protocol with high CAN-bus
frame rate of over 8000 messages per
second. The gateway device has an Atmel
AT91 SAM9260 microcontroller with ARM
926EJ-S core running at 180 MHz. CAN-bus
interface is implemented with Microchip
MCP2515 CAN controller. The
microcontroller communicates with the CAN
controller through Serial Peripheral Interface
(SPI) bus.

The gateway device used SocketCAN as its
original CAN driver implementation and
publicly available MCP2515 device driver.
The driver was later merged into the 2.6.33
kernel. The work progressed in three
phases. At first, the platform and device
driver optimizations were applied to the
SocketCAN driver. Even with full platform
optimizations the performance requirements
of the application were not met. In the
second phase, the LinCAN driver was ported
to the gateway device. Performance was
compared, but also LinCAN couldn’t match
the performance requirements. This led to
the design of the Wapice Custom CAN
Driver (WCCD). It uses the same platform
and CAN chip device driver optimizations
but specifically addresses the problems in
the CAN message buffering. It also
optimizes the interface between the kernel
space and the user space application. The

following design constrains were defined for
the WCCD.

• The driver architecture should have high
performance and it should handle full
theoretical CAN message rate.

• It should consume as little as possible of
the CPU time.

• It should minimize the messages lost due
to HW buffer overflow situations.

The following aspect in the driver design
was not considered important:

• Ability to read CAN messages from
multiple user space threads.

We studied the previously mentioned CAN
driver alternatives and present an optimized
driver implementation, measure and
evaluate its performance, and discuss the
drawbacks with our chosen optimizations.
The following Section 2 presents common
optimization methods that can be applied.
Section 3 presents our driver architecture
and the applied optimizations. The
performance of the driver was compared
against the SocketCAN and the LinCAN
drivers. These results are presented in
Section 4. This is followed by Conclusions
and ending with discussion based on the
results in Section 6.

2. Optimization methods

We have identified five critical
implementation areas: Interrupts, direct
memory access (DMA), inlining, use of locks
and branch hints.

2.1. Interrupts

Interrupts can cause a significant amount of
CPU load to the system if the interrupt rate
is high. Each interrupt results in at least one
context save and reload procedure. In
traditional Linux systems, the interrupt
service routine (ISR) schedules the
occurring interrupts inside the interrupt task
context. Normally, the ISR is also divided to
top and bottom halves. The bottom half is
signaled from the interrupt thread context.

In a preempt-RT Linux, interrupts are
normally run in their own thread context. The

benefit of threaded interrupts is that they can
be prioritized. In addition, the preempt-RT
Linux provides a mechanism to run ISR’s in
the interrupt context.

Due to the amount of context switches
needed in the Linux architecture, the
frequency of interrupts should be minimized
and possible code paths should be made as
short as possible for optimum performance.
They introduce latency to the system.

2.2. DMA

Most modern CPU’s allow memory transfer
operations to be offloaded from the CPU to
DMA engine, which can be used to move
data between memory locations and
peripheral devices. Normally an interrupt is
generated when a DMA transfer has
completed. Using the DMA engine, an
application can perform other operations
while memory content is transferred.

Use of DMA requires platform dependent
code to allow DMA buffers to remain
coherent throughout transactions. Platform
itself defines where DMA buffering can be
used.

2.3. Inlining

Generally, it is good to have functions to
separate functionalities and to reduce the
amount of program code. However, every
function call causes several register writes
on target CPU. This is not an issue on
functions which are called only a few times,
but for functions that are called several
thousands of times a second, the amount of
time spent accumulates. When a function is
inlined, the function call is replaced with the
content of your function. It will increase the
size of your final binary, but it can speed it
up moderately.

GCC, a popular Linux compiler, only takes
the inline keyword as a hint, which may not
be taken into account. Functions can be
forced to be inlined regardless of the
optimization level by setting a special
attribute. The attribute is defined after the
function name like this:

inline int YourFunction(void)
__attribute__((always_inline));

2.4. Use of locks

In all multi-threaded systems some kind of
mutual exclusion mechanism is needed to
ensure validity of the shared data. Operating
systems usually provide mutexes,
semaphores, spinlocks and critical sections
for this purpose. Usage of these
mechanisms can be relatively CPU time
expensive. Alternatively an atomic operation
support can be used to implement simple
synchronization between threads and
interrupts. Linux OS provides a platform
dependent atomic API that is available for
many CPU platforms. This API can be used
to implement efficient algorithms and to
synchronize data between threads.

The ARMv5 CPU core architecture used on
our target processor does not provide CPU
instruction set support for the
implementation of the atomic API. Instead,
the implementation uses short critical
sections where interrupt are blocked.

2.5. Branch hints

If the CPU execution jumps to a branch that
the CPU branch prediction logic has not
been able to predict, the CPU instruction
pipeline has to be flushed. Flushing can
cause a delay of several clock cycles. It is
advisable at the source code level to provide
hints for the compiler when there is strong
probability of certain condition with a
compiler keyword. GCC provides
mechanism for static source code level
branch prediction hints. This allows the code
to be organized so that in the more likely
code path the execution is linear. Linux
kernel provides preprocessor macros likely()
and unlikely() to control the branch
prediction.

3. Linux CAN device driver implementation

In general, a device driver is a software
component which provides access to a HW
resource (device). From the main operation
viewpoint a low-level communication
peripheral driver such as CAN device driver
has three main tasks: receive, transmit and
media/bus control. In addition, the device
driver has operating system dependent
functionalities. Implementation of receive
and transmit operations define the practical

driver performance: latency and throughput.
For our driver design, the main goal was to
obtain high-performance buffer read and
write operations.

To obtain high performance, we made the
following design decisions, for which
reasoning is given later:

• Implement driver as character device.

• Interrupt service routine (ISR) should
never have to wait while adding CAN
frames to the buffer.

o ISR operation can never be interrupted
by the character device reading the
buffer. No operation is done while ISR
is using the buffer.

o Character device’s buffer operation
can be interrupted at any moment by
the CAN ISR.

• Multiple CAN frames can be read at once.

• One-way communication in reception;
ISR adds CAN frames and character
device reads them from the buffer.

• Received CAN frames are overwritten by
new frames if no more free space is
available in the buffer.

The character device driver implementation
principle is presented in Figure 1. IOCTL is
used to set read timeout, bitrate and other
configuration options. Timer counter
interrupt is used to schedule buffer reads.
The architecture of WCCD is shown in
Figure 2.

3.1. Platform resources

The MCP2515 has two CAN message
reception buffers with rollover support. Thus
2-stage primitive HW FIFO is possible [7].
After the reception of the first message (First
buffer is full), the MCP2515 will generate a
CPU interrupt. In the worst case situation,
this gives 2*47 us theoretical minimum for
the CPU to service the interrupt and read the
message through SPI before an HW buffer
overflow can occur.

The time to handle a CAN message
reception can be divided to following
phases; ISR latency, the SPI transaction
time and the software overhead in the
interrupt service routine.

3.2. Performed platform optimizations

The interrupt latency in the system has been
optimized by using Preempt-RT patched
kernel. The Preempt-RT patch moves
normal ISR routines to tasks, which provides
better priorization between interrupts and
overall interrupt latency. The
IRQF_NODELAY flag provided by the
Preempt-RT framework was used to
prioritize the MCP2515 CAN ISR and thus
the CAN message handling over all the
other functionalities in the system. Different
kernel versions were tested and the effects
of the kernel versions to the ISR latency are
displayed in Table 1.

Figure 2. WCCD architecture on ARM platform using an
external SPI CAN-controller (MPC2515).

Table 1. Kernel version effect on ISR latency.

 Min
(us)

Avg
(us)

Max
(us)

Max -
USB (us)

2.6.29.6-rt24 8,2 13 108 131

2.6.31.12-rt20 9,2 13,9 115,6 125

2.6.29.6 5,7 10,4 77 6727

2.6.31.12 7,6 11,4 88,1 6572

Figure 1. Receive buffer implementation.

User Space Kernel Space

/dev/can0

Character Device Buffer ISR

RxBuffer • read

• ioctl

Read CAN frame

thru SPI and add to

the buffer

ioctl used to set read

timeout and eventually

others configurations

options

The interrupt latency has been measured by
initializing a CPU peripheral timer interrupt to
be performed in the overflow situation. The
free running counter of the timer is sampled
in the ISR and the interrupt latency is
calculated from the value of the free running
counter. Over 2000 interrupts were sampled
to get the results for the interrupt latencies.
During the test, 10 user space threads were
running with 100 % CPU utilization. The
Max-USB results demonstrate the interrupt
latency during the insertion of USB memory
stick and mounting of the FAT file system.
From the results we can conclude that the
non-preempt-RT systems can provide better
average latency but they fail to perform
deterministically under some operating
situations. Also, the maximum measured
latency indicates that it is impossible to
guarantee no loss of CAN frames, because
the maximum interrupt latency should be
less than two CAN frame transmission times
(MCP2515 has two reception buffers).

3.2.1. PIO optimizations

In the hardware platform used, the
MCP2515 interrupt line is connected to the
Parallel Input/Output (PIO) controller of the
Atmel AT91SAM9260 microcontroller. The
PIO controller can be configured to give
interrupts from the PIO pin status changes.
In the AT91 Linux port, the PIO controller
interrupts are handled in the different code
path than other interrupts. The PIO interrupt
handling was optimized by replacing the
loop through the PIO_ISR status flags with
instructions that resolve the first bit set in the
word.

3.2.2. MCP2515 interrupt handling

optimizations

The interrupt service routine of the
MCP2515 was optimized heavily. Normal
micro optimization and static branch
prediction techniques were used in this
critical code. Also function inlining was used
heavily. Logic for the ISR was implemented
to disable further interrupt requests from the
MCP2515 while executing the ISR. At the
end of the ISR routine the PIO pin, normally
used as the interrupt pin, is polled in the
digital input mode to check if the MCP2515
is still trying to interrupt the processor. With
PIO polling, a possible second interrupt can

be serviced without unnecessary ISR
generation. Depending on the CAN
message length, message transmission
timing and interrupt latencies; this method
can significantly reduce the interrupts from
MCP2515.

3.2.3. DMA optimizations

The data transfer to and from the MCP2515
is implemented using the SPI-bus. The
AT91SAM9260 supports DMA transfer from
the SPI peripheral device receive and
transmit buffers directly to the memory of the
CPU. The original MCP2515 driver utilized
the kernel’s DMA buffer allocation
dma_alloc_coherent()–API and the
spi_message_init() interface. In the target
platform, this results in a DMA buffer
mapping for each SPI transaction. According
to our measurements, a more efficient way
is to use the streaming DMA mapping API
provided by the kernel. In this
implementation, the kernel provides API for
the DMA buffer synchronization: the
dma_sync_single_for_cpu() –function is
called to ensure the data in the buffer can be
used by the CPU. Before data in the transfer
buffer is started again, the
dma_sync_single_for_device() –function
must be called to give the ownership of the
buffer back to DMA engine. This also
ensures the data has been flushed from the
cache to the memory before the transfer is
started. According to our measurements, the
DMA buffer handling optimization saved 16
us from each receive message interrupt.

3.2.4. SPI handling optimizations

The MCP2515 has an SPI interface with
maximum SPI clock frequency of 10 MHz
[7]. For the receive messages, the most
efficient way to service the MCP2515
interrupt requires two SPI transfers. First,
the CANITF register is read. The second
transfer reads the message buffer content.
An SPI transfer requires 3+14 = 17 bytes of
data to be transferred through the SPI
interface. With 10 Mhz clock, the theoretical
minimum for SPI traffic is 13.6 us. The AT91
Linux kernel SPI implementation for the
MCP2515 usage was optimized by inlining
the code manually in the MCP2515 ISR.
Additionally, the SPI implementation was
modified to not to generate interrupts;

instead the SPI peripheral is polled for the
transfer completion from the status flag of
SPI peripheral. The current implementation
is MCP2515 specific. It would be possible to
create a generic AT91 SPI driver which
would provide generic purpose SPI
functionality with the same benefits for the
short SPI transactions assuming that
completion polling is shorter than the
interrupt latency.

3.3. Receive buffer implementation

CAN driver receive buffers are usually
implemented as ring buffers. They require
lock mechanisms during read/write
operations: new data cannot be added to the
buffer while it is being read. This can
increase receive latency.

The receive buffer for the CAN message
reception was implemented using a single
writer single reader non-blocking algorithm
utilizing the Atomic API. This approach
minimizes the usage and length of the
critical sections and the priority inversion
with user space process and the ISR.

3.4. Transmit buffer implementation

The CAN frame write operation in WCCD is
implemented with asynchronous I/O. The
write operation copies the CAN message
data to the internal circular buffers. Driver
handles internally the pointers to the head
and tail of the buffer.

As a general note, sending as many
messages as possible at once reduces the
amount of switches between user-space and
kernel, and improves the performance.

3.5. Driver usage

At driver API level, read & write is
performed using a 20-byte data structure
representing CAN frame data to ensure
minimum CPU load. If less than full CAN
frame is to be sent, the data size field is set
to indicate the amount of data and unused
data fields are left blank. Only one thread
can read from the device file at any given
time.

The device read function blocks until a
specific timeout occurs. This enables the
driver to receive multiple frames and return

them to user space with one read() system
call. The timeout can be set by the user with
IOCTL–function.

3.6. Port to PowerPC

As the receive buffer implementation didn’t
have platform dependencies, we ported it to
a PowerPC based platform previously using
SocketCAN. The major difference between
the platforms was the internal CAN
peripheral vs. the SPI CAN controller used in
the ARM platform.

4. Results

The following sections present our
performance measurement results. Majority
of the measurements vere performed on the
ARM core platform. For comparison, we
ported part of the driver stack to PowerPC,
and repeated CPU load and receive latency
measurements on it.

4.1. ARM platform

The ARM implementation results were
obtained with Atmel AT91SAM9260-based
hardware running custom Linux kernel
version 2.6.29.6-rt24. SocketCAN
comparisons were made with version dated
21.8.2009 and LinCAN measurements with
version 0.3.4 (March-2009). These were the
version available at the start of this work.
The WCCD measurements were made with
WCCD version 2.2.0.

Figure 3 shows CPU load when receiving
CAN frames at different frame rates. Figure
4 shows similar CPU load when sending
echo messages to another device. As can
be seen from both the figures, WCCD load
on CPU is significantly lower. To review the
sources of receive latency, Figure 5 shows
the CAN ISR execution time for reception.

Figure 6 shows CPU load on transmit.
Again, WCCD load is significantly lower. We
also measured CAN message transmit
latencies for WCCD, which are listed in
Table 2. The measurements were performed
at 1 Mbit and 250 kbit bus modes. First
column shows time from userspace
application write call to data on bus. Second
column shows the same measurement for
driver only. The third column lists the time

for the driver when three frames are written

to the bus.

4.2. PowerPC platform

For comparison, we ported our CAN driver
receive stack to a Freescale MPC5200B
PowerPC-based platform. This was done to
verify that the receive buffer optimizations
were not platform dependent. Linux kernel
version for the device was 2.6.23.1 with
somewhat older SocketCAN revision 454
(3.8.2007). The IPB-bus used by MSCAN
peripheral was set to 66 MHz.

Figure 7 is similar to ARM measurement
Figure 5, and compares CAN receive ISR
execution time with normal SocketCAN and
with WCCD receive buffer implementation.
Figure 8 shows the CPU load with different
receive rates at 1 Mbps bus speed.

5. Conclusions

Our measurements show that the proposed
implementation has significantly lower CPU
load both on transmit and receive
operations. In addition, receive interrupt
execution time is notably shorter and
transmit latencies are very short. The
measurements have been partly verified on
another processor platform with similar
results. We conclude that WCCD is highly
optimal CAN driver for applications requiring
low-latency and low CPU-load. The
implemented optimizations propose some
limitations to the driver use.

6. Discussion

The WCCD driver architecture performs
significantly better than the standard
solutions in high bus load environments,
especially on CPU platforms with limited
resources. For the ARM-based gateway
device implementation, we have been able
to achieve nearly lossless CAN message

Figure 4. CPU load on echo.

0%

20%

40%

60%

80%

100%

0 100 500 1000 2000
Frames per second

SocketCAN LinCAN WCCD

Figure 3. CPU load on receive.

0 %

20 %

40 %

60 %

80 %

100 %

0

5
0

0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

Frames per second

SocketCAN LinCAN WCCD

Figure 5. CAN receive ISR execution time (us). Other

includes mcp2515, SPI, DMA and AT91 code.

0

20

40

60

80

100

120

140

160

SocketCAN -

mpc2515

(original)

SocketCAN -

optimizations

LinCAN - one

client app. +

optimizations

WCCD

144,64 78,72 67,52 32

WCCD buffer

LinCAN post

SocketCAN netif_rx

SocketCAN SKB allocation

Other

Figure 6. Measured CPU load when transmitting 1000
frames/s.

0 % 20 % 40 % 60 % 80 % 100 %

SocketCAN /w …

SocketCAN

LinCAN

WCCD Table 2. Measured CAN-message write times (us). Write-
time is the time taken for the write-call execution. Start-
delay is the time from start of write call to beginning of
bus activity. Total-time is the time from start of write
command to end of bus transmission.

3 frames 3 frames

userspace driver driver userspace driver diver

Write-time 74 50 50 70 50 50

Start-delay 52 48 48 55 51 50

Total-time 94 99 335 220 240 850

1st frame 100 250

2nd frame 125 300

3rd frame 110 300

1Mbit 250 kbit

1 frame 1 frame

reception that was impossible with
SocketCAN or LinCAN drivers. We have
also tested the driver’s performance with
extremely high bus loads and have been
able to receive over 20000 CAN messages
per second. To achieve this, we had to make
significant amount of optimizations also to
the platform and low-level driver code
outside of the CAN driver framework. But as
the evaluation of the executed performance
measurements show, the usage of the
WCCD driver architecture provides clear
benefits over alternative CAN driver
implementations.

As the usage of the Linux for the demanding
CAN-bus systems increases, it seems
justifiable to create a custom CAN driver
architecture and optimize the platform code
for a specific purpose to achieve reliable
operation.

The biggest downside for the usage of the
WCCD is the lack of a standard interface.
Standard software cannot be used with it
without porting it to the WCCD driver API.
However, embedded systems applications
are often proprietary and developed to some
specific purpose.

As mentioned before, the reading of data
from two or more threads or processes is not
currently supported. Adding multithreaded
(and multiprocess) read, would roughly
double the time it currently takes to write to
the receive buffer. However, writing data
from multiple threads to the device driver is
supported.

The platform optimizations made for AT91
Linux port have not been sent to the Linux
community as the changes are highly board
specific and would require further work to
make them more generic. The SPI
optimizations made to support the usage
from hard interrupt context would probably
benefit many projects. However, this would
require major work in the whole SPI
subsystem of the kernel.

References

[1] Mendoza, P., Vila, J., Ripoli, I., Terrasa, S., Perez,
P., “Developing CAN based networks on RT-
Linux,” in Proc.8th IEEE Int Conf on Emerging
Technologies and Factory Automation, Antibes-
Juan les Pins, France, Oct 15-18, 2001, pp. 161-
167.

[2] Kiszka, j, “The Real-Time Driver Model and First
Applications,” in Proc. 7

th
 Real-Time Linux

Workshop, Lille, France, 2005.

[3] Zuberi, K.M., Shin, K.G., “Non-Preemptive
Scheduling of Messages on Controller Area
Network for Real-Time Control Applications,” in
Proc. Real-Time Technology and Applications
Symposium, Chicago, USA, May 15-17, 1995, pp.
240-249.

[4] “The SocketCAN project”,
http://developer.berlios.de/projects/socketcan/

[5] Sojka, M., Pisa, P., Petera, M., Spinka, O. And
Hanzalek, Z., ”A Comparison of Linux CAN Drivers
and their Applications,” in Proc. Int. Symposium on
Industrial Embedded Systems (SIES), Trento, Italy,
July 7-9, 2010, pp. 18-27.

[6] Wapice Ltd., “WRM247 technical data”
http://www.wapice.com/wapice_cms/files/WRM_24
7_rgb_full.pdf, 2011, 2 pp.

[7] Microchip Technology Inc., ”Microchip MCP2515
Datasheet”, DS22187F, 2010, 88 pp.

Figure 7. CAN receive ISR execution time (us). Tasks
listed in execution order (earliest at bottom).

0

10

20

30

40

50

60

SocketCAN - (MCP5200B

MSCAN)

SocketCAN - with WCCD RX

buffer (MCP5200B MSCAN)

56,4 7,4

WCCD buffer

SocketCAN netif_rx

SocketCAN SKB allocation

Other

SocketCAN netif RX schedule

MSCAN ISR

Figure 8. CPU load on CAN receive, PowerPC platform.

0,0

10,0

20,0

30,0

40,0

50,0

1000 2000 3000 4000 5000 6000 7000

C
P

U
 l

o
a

d
 (

%
)

Frames per second

SocketCAN WCCD

