
Document version: IoT-TICKET 3.19.1

IoT-TICKET USER MANUAL
REST API

Contents
1 IoT-TICKET REST API..5

2 Introduction ...6

2.1 Abbreviations and definitions ..6

2.2 Data Model ..6

2.3 General information ..7

2.4 Communication Security ..7

2.5 Quota Policy ..7

3 Device Management ...8

3.1 Register a device...9

3.2 Get devices..12

3.3 Get a single device..15

3.4 Get a device's datanode list ...17

3.5 Get a device's virtual data tag list ..20

3.6 Get data tag and device information with MID value..21

3.7 Move device ..23

3.8 Delete device ...25

4 Reading and writing data..26

4.1 Writing data ...26

4.2 Reading data ...28

4.3 Reading statistical data..31

4.4 Datanode creation...35

4.5 Example of a device with hierarchical components ...37

5 Enterprise management ...39

5.1 Get enterprises under an enterprise ..41

5.2 Create enterprise...44

6 Reading events..47

6.1 Read event history ..49

7 Dashboard management..52

7.1 List dashboards ..52

7.2 List dashboard templates...54

7.3 Create dashboard ...56

8 Error handling..59

9 Quota Management ..61

9.1 Get overall quota...61

9.2 Get device specific quota ...62

Table of tables

1 Data types... 26

Table of figures

1 Most advanced Internet of Things platform ...5

2 IoT-TICKET benefits..5

3 System data model ...6

4 Device hierarchy..8

5 Create device flow ..8

6 Example of a device with hierarchical components .. 37

Copyright
© 2022 WAPICE Ltd - All
rights reserved

We control the
copyright in this document, and you may only use this document or parts of this
document in accordance with the provisions in our terms and conditions.
Reproducing or copying this document or parts of this document without Wapice’s
written consent represents an infringement of the terms and conditions of use.
Therefore, this document may not be entrusted to a third party without Wapice’s
written consent, nor can it be subject to any unauthorised purpose.

Unless otherwise
stated, we or our licensors own the intellectual property rights of the
software and/or hardware described in this document. Subject to the license,
all these intellectual property rights are reserved. Therefore, the content may
be used, copied, or disclosed only in accordance with the terms and conditions
of such license.

Disclaimer

IoT-TICKET is a subscription-based service
which continuously will be improved and extended. Functionality may be added,
improved, altered, changed or deprecated with new releases. Hence the following
features and functionality description provides a snapshot at the current time
the document has been created. IoT-TICKET will perform substantially as
described in the applicable product documentation and by default we do not make
any specific guarantees. By nature connected assets may differ a lot case by
case which may affect to instance scalability and performance and by default we
do not make any specific guarantees for amount of connected assets. IoT-TICKET
performance may heavily depend on the chosen hosting hardware and hosting
provider.

Generally Wapice will provide customers
with 12 months’ notice before removing any material feature or functionality or
discontinuing a service, unless security, legal or system performance
considerations require an expedited removal. This does not apply to previews.

This document describes the overall functionality and services of
IoT-TICKET available at the given point in time. The service and feature
availability may depend on the customer specific subscription agreement.

5

1 IoT-TICKET REST API

About IoT-TICKET®

IoT-TICKET is your Ticket to the Internet of Things and beyond… Developed since 2005, IoT-TICKET
is, with over 1.6 million users, one of the most advanced and complete Internet of Things platforms
on the market.

1 Most advanced Internet of Things platform

IoT-TICKET covers versatile data-acquisition needs, Big-Data and analytics enabled servers, web-
based Dashboards and Reports. With IoT-TICKET, one can create and deploy fully fledged IoT
applications in minutes.

2 IoT-TICKET benefits

6

2 Introduction

This document provides the guidelines for the WRM Internet of Things Rest API. It explains how
devices are created and managed, how data nodes are created, written to and read from. While the
examples provided are not exhaustive in scope, they do provide a clear indication of what is
expected as input and output to the API.

2.1 Abbreviations and definitions

Definition Explanation

REST Representational state transfer

API Application Programming Interface

JSON JavaScript Object Notation

XML Extensible Markup Language

IoT Internet of Things

In the document, an integer type refers to a 32 bit signed integer (231-1 to -231) and a long is a 64
bit signed integer (263-1 to -263). The length of strings accepted as parameter to a call are stated in
the form String:(max-length) meaning the string should not exceed max-length characters. Only
UTF-8 encoded strings are accepted.

2.2 Data Model

The WRM system data model visible through this REST API is illustrated in the figure below.

3 System data model

At the base of this model, Enterprises are situated (e.g. companies or customers). Each Enterprise
can have multiple devices that need to be monitored (e.g. a home, an engine, or a truck). A device
can have multiple Data Nodes, describing what is measured from the device it belongs to (e.g.
temperature, engine RPM).

7

2.3 General information

In the examples that will follow, server-url stands for a URL provided for the WRM instance to which
the API calls are to be made and the version number.

2.4 Communication Security

All requests to the API are made through HTTPS. With HTTPS, the HTTP protocol is protected from
wiretapping and man-in-the-middle attacks, therefore data being transferred is secure.
Authentication to the API will be via HTTP Basic with username and password pair and should be
sent along all requests that require it. Below is an example of a request using command line
program curl. The user name and password are supplied with the –user option.

curl -X POST --user wrmuser:wrmpassword \
 -H "Content-Type:application/json" \
 -d '{"name":"OPC Server",
 "manufacturer":"HP",
 "type":"PC",
 "attributes":[{"key":"OS","value":"Windows 7"},
 {"key":"Screen-size","value":"1960*1800"}]
 }' \
"https://{server-url}/devices"

2.5 Quota Policy

WRM limits the number of requests per day, amount of data that can be stored, number of devices
and number of data nodes per device. Each of these quotas is enforced on a per-client basis. Users
should visit the WRM webpage on how to increase allocated quotas.

Subject to change, free users are currently restricted to five devices, a maximum of 20 data nodes
per device and a total of 20,000 read request per day per device. The total amount of data storage
for a free user is also restricted to 50 Megabytes. When the quota is exceeded, an HTTP Response
code 403 with the specific error code is sent in the response. For more details, see the Error
Handling chapter below. The read request quotas are reset at midnight, UTC time.

server-url = {base-url}/api/v{version-number}
By default the complete API URL will be https://my.iot-ticket.com/api/v1.

https://my.iot-ticket.com/api/v1

8

3 Device Management

A registered user by default has an enterprise root object. When a device is registered with a
client's credential it immediately shows up under the client's enterprise.

4 Device hierarchy

A device ID is automatically assigned to a newly registered device; the API Client should store this
device ID as it uniquely identifies the device and will be used in subsequent calls.

When in doubt, a good flow will be to get the list of already created devices and validate the
device's existence on the server through its name and attributes. Once the device is registered and
the device ID is obtained, clients can immediately start sending measurement values to the server.
The figure below illustrates this sequence.

5 Create device flow

Client should avoid multiple registration call as this might result to duplicate devices being
created.

9

•
•
•
•
•
•
•

3.1 Register a device

URL: /devices/

HTTP method: POST

This call will create a new device under the authenticated client's enterprise unless the enterpriseId
is specified.

Parameter Description Example

Object A Json object with the following
fields:

Name (required *)
Manufacturer (required)
Type
Description
Attributes
EnterpriseId
getOrCreateFilter

{
 "name": "OPC Server",
 "manufacturer": "HP",
 "type": "PC",
 "description": "The main server for process
data",
 "attributes": [
 {
 "key": "Application Version",
 "value": "0.2.3"
 },
 {
 "key": "Chip",
 "value": "Corei7"
 }
],
 "enterpriseId": "E50"
}

Name
(String:100)
(required *)

A short name for the device. It is
visible in the enterprise tree when
the client logs in to the WRM
Desktop.

NX100, iPhone 5

Manufacturer
(String:100)

Short name for the device's
manufacturer.

ABB, Apple

Type
(String:100)

This field should describe the main
category the device belongs to.

PC, server, mobile phone, sensor, vehicle

Description
(String:255)

A description of the device: what it
does or where it is located.

Frequency converter for the ship's engine.

Attributes
(key, String:255)
(value, String:255)

Contains arrays of key value pairs.
This is used to store additional
attributes for the devices as desired
by the client.
A maximum of 50 attributes is
accepted.

Additional attributes for an AC Drive may include:
Inputphase : Three phases
InputVoltage: 380-420V
Options: EMC2, QPES

10

Parameter Description Example

enterpriseId Enterprise Id under which the device
should be created. If Enterprise Id is
not given (or left empty) then the
device will be created under
enterprise that current user belongs
to.

Enterprise Id is given as a string and
server accepts the Id with and
without the prefix "E".

50, E50

getOrCreateFilter Filter for getting device and creating
it only if it doesn't already exist. If
device matching the filter is found, it
is not created but only returned as a
response to this request.

name or attributes or any
combination of those are required.
This allows to filter only by name or
attributes and to allow duplicate
entries on any of those if desired. If
name is not provided here it needs
to be provided as regular parameter.
Values in filter overwrite regular
name and attributes if they are set.
Search for name is case insensitive
and search for attributes is case
sensitive.

{
 "name": "Device 1",
 "attributes": [
 {
 "key": "Application Version",
 "value": "0.2.3"
 },
 {
 "key": "Chip",
 "value": "Corei7"
 }
]
}

* Required if not present in getOrCreateFilter.

When any of the required fields are not present or the parameter constraints are violated, an HTTP
status code 400 is returned along with an error object in the response payload. For more details,
see the Error Handling chapter below.

Searches only devices
directly one level under
the user's enterprise/
provided enterprise.

11

Response to register a device

Field Description

href The URL to access the resource.

deviceID The ID of the device, to be used in subsequent calls to write and read the device
data nodes. It consists of 32 alphanumeric characters.

name The name provided for the device when registering it.

manufacturer The manufacturer name provided when registering it.

type The type provided for the device when registering it.

createdAt The time the device was created on the server. The ISO8601 format (UTC) format
is used.

attributes The device attributes. Name value pair provided when registering the device.

description Description of the device if any.

enterpriseId Enterprise Id of the Enterprise the device belongs to.

enterpriseName Name of the Enterprise the device belongs to.

resourceId The resource id for the device.

created Boolean value if a new device was registered (only present when
getOrCreateFilter is used).

Example

Request

https://\{server-url}/devices/
REQUEST PAYLOAD is as shown in the example above.

JSON Response

{
 "attributes": [{ "key": "Application version", "value": "0.2.3" },
 { "key": "Chip", "value": "Corei7" }],
 "createdAt": "2014-12-03T10:31:05UTC",
 "deviceId": "153ffceb982745e8b1e8abacf9c217f3",
 "href": "https://{server-url}/devices/153ffceb982745e8b1e8abacf9c217f3",
 "name": "OPC Server",
 "manufacturer": "HP",
 "type": "PC",
 "enterpriseId": "E50",
 "enterpriseName": "Enterprise 1",
 "resourceId": "X123"
}

http://en.wikipedia.org/wiki/ISO_8601

12

3.2 Get devices

This call returns a list consisting of general information about the devices the client has access to.
URL: /devices
HTTP method: GET
Authentication Required: Yes

Parameter Description Example

callback JavaScript function to be executed when the
response is received (JSONP).

/devices?callback=foo
returns: foo(response data);

format The format: json or xml; the default format is json. /devices?format=xml

limit
(integer)

The number of results to return. Maximum value is
100, it defaults to 10 when no value is provided.

/devices?limit=5

offset
(integer)

The number of results to skip from the beginning. /devices?offset=3

Paging example:
/devices?offset=0&limit=100
/devices?offset=100&limit=100

hasDatanode It gets only the devices that contain the datanode.
If the value starts with a slash character, then the path
is also checked in query; if not, then only the
datanode name is checked.

/devices?hasDatanode=/path/to/temp1, /
path/to/temp2, temp3

hasMetadata It gets only the devices that contain the metadata. /devices?hasMetadata=metadata1:value1,
metadata2:value2

enterpriseId It gets only devices that are under the enterprise with
enterpriseId. Enterprise id can be provided with or
without the "E" character in front of the id.

/devices?enterpriseId=1234

When any of the required fields are not present or the parameter constraints are violated, an HTTP
status code 400 is returned along with an error object in the response payload. For more details,
see the Error Handling chapter below.

Response to get devices

Field Description

offset The number of results skipped from the beginning.

limit The amount of results per page.

fullSize The total number of devices that the client has access to.

http://en.wikipedia.org/wiki/JSONP

13

•
•
•
•
•
•
•
•
•
•

Field Description

devices The list of device objects. Each of the object contains:

href
name
manufacturer
type (if any)
createdAt
description
attributes
enterpriseId
enterpriseName
resourceId

href The URL to the device.

name The name of the device provided when registering it.

manufacturer The manufacturer name provided when registering the device.

type The type provided for the device when registering it.

createdAt The time the device was registered using ISO8601 format.

attributes The device attributes. Name value pair provided when registering the device.

description Description of the device if any.

enterpriseId Enterprise Id of Enterprise that the device belongs to.

enterpriseName Name of the enterprise that the device belongs to.

resourceId The resource id of the device.

Example

Request

[https://\{server-url}/devices
REQUEST PAYLOAD:NONE

JSON Response

http://en.wikipedia.org/wiki/ISO_8601

14

{
 "fullSize": 28,
 "limit": 10,
 "offset": 0,
 "items": [
 {
 "attributes": [{ "key": "OS", "value": "Windows 7" },
 { "key": "Screen Size", "value": "30 Inches" }],
 "createdAt": "2014-12-03T10:31:05UTC",
 "deviceId": "153ffceb982745e8b1e8abacf9c217f3",
 "href": "https://{server-url}/devices/153ffceb982745e8b1e8abacf9c217f3",
 "name": "OPC Server",
 "manufacturer": "HP",
 "type": "PC",
 "enterpriseId": "E50",
 "enterpriseName": "Enterprise 1",
 "resourceId": "X123"
 },
 {
 "attributes": [],
 "createdAt": "2014-12-03T08:55:14UTC",
 "deviceId": "e057aba9cad84a3aa3fc6b99bbe2196e",
 "href": "https://{server-url}/devices/e057aba9cad84a3aa3fc6b99bbe2196e",
 "name": "GT-I9295",
 "manufacturer": "Samsung",
 "type": "MobilePhone",
 "entepriseId": "E50",
 "enterpriseName": "Enterprise 1",
 "resourceId": "X124"
 },

]
}

XML Response

15

<devicesResult>
 <fullSize>28</fullSize>
 <limit>10</limit>
 <offset>0</offset>
 <items>
 <device>
 <attributes />
 <createdAt>2014-12-10T10:40:17UTC</createdAt>
 <description>The main server for process data</description>
 <deviceId>e057aba9cad84a3aa3fc6b99bbe2196e</deviceId>
 <enterpriseId>E50</enterpriseId>
 <enterpriseName>Enterprise 1</enterpriseName>
 <href>https://{server-url}/devices/e057aba9cad84a3aa3fc6b99bbe2196e</href>
 <name>GT-19295</name>
 <resourceId>X123</resourceId>
 <type>MobilePhone</type>
 <manufacturer>Samsung</manufacturer>
 </device>
 <device>
 <attributes>
 <attribute key="Application Version" value="0.2.3"/>
 <attribute key="Chip" value="Corei7"/>
 </attributes>
 <createdAt>2014-12-10T10:44:03UTC</createdAt>
 <description>The main server for process data</description>
 <deviceId>153ffceb982745e8b1e8abacf9c217f3</deviceId>
 <enterpriseId>E50</enterpriseId>
 <enterpriseName>Enterprise 1</enterpriseName>
 <href>https://{server-url}/devices/153ffceb982745e8b1e8abacf9c217f3</href>
 <name>OPC Server</name>
 <resourceId>X124</resourceId>
 <type>PC</type>
 <manufacturer>HP</manufacturer>
 </device>
 <!--more devices -->
 </items>
</devicesResult>

3.3 Get a single device

URL: /devices/deviceId
HTTP method: GET
Authentication Required: Yes
This call gets general information for the device with the provided ID.

Parameter Description Example

callback JavaScript function to be executed when the
response is received (JSONP).

/devices/deviceId?callback=foo
returns: foo(response data);

http://en.wikipedia.org/wiki/JSONP

16

Parameter Description Example

format The format: json or xml; the default format is json. /devices/ deviceId?format=xml

When any of the required fields are not present or the parameter constraints are violated, an HTTP
status code 400 is returned along with an error object with more information. For more details, see
the Error Handling chapter below.

Response to get a device

Field Description

href The URL to the device.

deviceId The ID of the device, to be used in subsequent calls to write and read the device
data nodes. It consists of 32 alphanumeric characters.

name The name of the device provided when registering it.

manufacturer The manufacturer name provided when registering the device.

type The type provided for the device when registering it.

createdAt The time the device was registered using ISO8601 format.

attributes The device attributes. Name value pair provided when registering the device.

description Description of the device if any.

enterpriseId Enterprise Id of Enterprise that device belongs to.

enterpriseName Name of the enterprise that the device belongs to.

resourceId The resource id of the device.

Example

GET Request

[https://\{server-url}/devices/153ffceb982745e8b1e8abacf9c217f3
REQUEST PAYLOAD:NONE

JSON Response

http://en.wikipedia.org/wiki/ISO_8601

17

{
 "attributes": [],
 "createdAt": "2014-12-03T08:55:14UTC",
 "deviceId": "e057aba9cad84a3aa3fc6b99bbe2196e",
 "href": "https://{server-url}/devices/153ffceb982745e8b1e8abacf9c217f3",
 "name": "GT-I9295",
 "description": "The main server for process data",
 "type": "MobilePhone",
 "manufacturer": "Samsung",
 "enterpriseId": "E50",
 "enterpriseName": "Enterprise 1",
 "resourceId": "X123"
}

XML Response

<device>
 <attributes>
 <attribute key="Application Version" value="0.2.3"/>
 <attribute key="Chip" value="Corei7"/>
 </attributes>
 <createdAt>2014-12-03T10:44:03UTC</createdAt>
 <description>The main server for process data</description>
 <deviceId>153ffceb982745e8b1e8abacf9c217f3</deviceId>
 <enterpriseId>E50</enterpriseId>
 <enterpriseName>Enterprise 1</enterpriseName>
 <href>https://{server-url}/devices/153ffceb982745e8b1e8abacf9c217f3</href>
 <name>OPC Server</name>
 <resourceId>X123</resourceId>
 <type>PC</type>
 <manufacturer>HP</manufacturer>
</device>

3.4 Get a device's datanode list

URL: /devices/deviceId/datanodes/
HTTP method: GET
Authentication Required: Yes
This call gets a list of provided device datanodes.

Parameter Description Example

callback JavaScript function to be executed when the response
is received (JSONP).

/devices/deviceId/datanodes?callback=foo
returns: foo(response data);

limit
(integer)

The number of results to return. Maximum value is 100,
it defaults to 10 when no value is provided.

/devices/deviceId/datanodes?limit=5

http://en.wikipedia.org/wiki/JSONP

18

Parameter Description Example

offset
(integer)

The number of results to skip from the beginning. /devices/deviceId/datanodes?offset=3

format The format: json or xml; the default format is json. /devices/deviceId/datanodes?format=xml

When any of the required fields are not present or the parameter constraints are violated, an HTTP
status code 400 is returned along with an error object in the response payload. For more details,
see the Error Handling chapter below.

Response to get a device's datanodes

Field Description

offset The number of results skipped from the beginning.

limit The amount of results per page.

fullSize The total number of hits to the query.

items The list of datanode objects.

Example

GET Request

[https://\{server-url}/devices/153ffceb982745e8b1e8abacf9c217f3/datanodes
REQUEST PAYLOAD:NONE

JSON Response

19

{
 "fullSize": 2,
 "limit": 10,
 "offset": 0,
 "items": [
 {
 "unit": "c",
 "dataType": "double",
 "href": "https://{server-url}/process/read/4ec1b0221f794f0f990e419bcc9a15cf?
datanodes=Engine/Core/Temperature",
 "name": "Temperature",
 "path": "Engine/Core"
 },
 {
 "unit": "Hz",
 "dataType": "long",
 "href": "https://{server-url}/process/read/4ec1b0221f794f0f990e419bcc9a15cf?
datanodes=Cycles",
 "name": "Cycles",

 }]
}

XML Response

<datanodeResult>
 <fullSize>2</fullSize>
 <limit>10</limit>
 <offset>0</offset>
 <items>
 <datanode unit="c">
 <dataType>double</dataType>
 <href>https://{server-url}/process/read/4ec1b0221f794f0f990e419bcc9a15cf?datanodes=Engine/
Core/Temperature</href>
 <name>Temperature</name>
 <path>Engine/Core</path>
 </datanode>
 <datanode unit="Hz">
 <dataType>long</dataType>
 <href>https://{server-url}/process/read/4ec1b0221f794f0f990e419bcc9a15cf?datanodes=Cycles</
href>
 <name>Cycles</name>
 </datanode>
 </items>
</datanodeResult>

20

3.5 Get a device's virtual data tag list

URL: /devices/deviceId/datanodes/virtual
HTTP method: GET
Authentication Required: Yes
Get a list of provided device virtual data tags

Parameter Description Example

callback JavaScript function to be executed when the response
is received (JSONP)

/devices/deviceId/datanodes/virtual?
callback=foo
returns: foo(response data);

limit
(integer)

Number of results to return. Maximum of 100, defaults
to 10 when none is provided

/devices/deviceId/datanodes/virtual?
limit=5

offset
(integer)

Number of result to skip from the beginning. /devices/deviceId/datanodes/virtual?
offset=3

format Format (json or xml) default is json /devices/deviceId/datanodes/virtual?
format=xml

When any of the required fields are not present or the parameter constraints are violated, an HTTP
status code 400 is returned along with an error object in the response payload. For more details
see Error Handling chapter.
Response to get device virtual data tags

Field Description

offset The number of results skipped from the beginning.

limit The amount of results per page.

fullSize The total number of hits to the query.

items The list of datanode objects.

Example

GET Request

[https://\{server-url}/devices/153ffceb982745e8b1e8abacf9c217f3/datanodes/virtual
REQUEST PAYLOAD:NONE

JSON Response

http://en.wikipedia.org/wiki/JSONP

21

{
 "fullSize": 2,
 "limit": 10,
 "offset": 0,
 "items": [
 {
 "dataType": "double",
 "href": "https://{server-url}/process/read/4ec1b0221f794f0f990e419bcc9a15cf?
vtags=Temperature",
 "name": "Temperature"
 },
 {
 "dataType": "long",
 "href": "https://{server-url}/process/read/4ec1b0221f794f0f990e419bcc9a15cf?vtags=Cycles",
 "name": "Cycles"
 }]
}

XML Response

<datanodeResult>
 <fullSize>2</fullSize>
 <limit>10</limit>
 <offset>0</offset>
 <items>
 <datanode
 <dataType>double</dataType>
 <href>https://{server-url}/process/read/4ec1b0221f794f0f990e419bcc9a15cf?vtags=
Temperature</href>
 <name>Temperature</name>
 </datanode>
 <datanode>
 <dataType>long</dataType>
 <href>https://{server-url}/process/read/4ec1b0221f794f0f990e419bcc9a15cf?vtags=Cycles</href>
 <name>Cycles</name>
 </datanode>
 </items>
</datanodeResult>

3.6 Get data tag and device information with MID value

URL: /datatags/mids

HTTP method: GET

Authentication Required: Yes

22

Get information about the device and the data tag fetched via data tag's MID value. Only the
External device's non-virtual data tags are supported. The query will ignore MIDs, which aren't
visible to the user and aren't the supported type. The query takes following parameters:

Parameter Description Example
mids Required parameter which defines data tag(s) that

should be fetched. Only the External device's non-
virtual data tags to which has access to are fetchable.

/datatags/mids?mids=303,652,653,742,845

format Optional parameter for defining the format (json or
xml) of request's response, default is json

/datatags/mids?mids=385&format=json

The query returns following information about the matching MIDs:

Field Description
MID The MID value of the requested data tag.

deviceId Device ID information of the device to which the request data tag is related to.

path The location path from the data tag's device to the data tag's location. If the data tag is
located directly at the device, then the path value is empty ("").

tagName The name of the requested data tag.

Example:

GET Request
[https://\{server-url}/datatags/mids?mids=324,325,350,360
REQUEST PAYLOAD:NONE

JSON Response

{
 "tagInfoList": [
 {
 "MID": 324,
 "deviceId": "abcdefg123",
 "path": "",
 "tagName": "TimerTag"
 },
 {
 "MID": 325,
 "deviceId": "abcdefg123",
 "path": "asset1",
 "tagName": "RESTValueTag"
 },
 {
 "MID": 360,
 "deviceId": "ed12efg56",
 "path": "collection/device1A",
 "tagName": "Sensor1A"
 }
]
}

XML Response

23

•

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<dataTagInfoList>
 <tagInfoList>
 <deviceId>abcdefg123</deviceId>
 <MID>324</MID>
 <path></path>
 <tagName>TimerTag</tagName>
 </tagInfoList>
 <tagInfoList>
 <deviceId>abcdefg123</deviceId>
 <MID>325</MID>
 <path>asset1</path>
 <tagName>RESTValueTag</tagName>
 </tagInfoList>
 <tagInfoList>
 <deviceId>ed12efg56</deviceId>
 <MID>360</MID>
 <path>collection/device1A</path>
 <tagName>Sensor1A</tagName>
 </tagInfoList>
</dataTagInfoList>

3.7 Move device

URL: /devices/move/deviceId/
HTTP method: POST
Authentication Required: Yes
Move device from current enterprise to another enterprise.

Parameter Description Example

Object A Json (or xml) object with the following fields:

enterpriseId (required) {
 "enterpriseId": "E50"
}

format Format (json or xml), default is json /devices/move/deviceId?
format=xml

enterpriseId
(String)

Enterprise Id from IoT-TICKET server under which to move
the device. If the Enterprise Id matches to the Enterprise
that the device already is in, the API returns also succesfully
but does nothing for the device.

Enterprise Id is given as a string and server accepts the Id
with and without the prefix "E".

E50, 50

When any of the required fields are not present or the parameter constraints are violated, an HTTP

24

status code 400 is returned along with an error object in the response payload. For more details
see Error Handling chapter.

Response to move device

Field Description

href URL to the device

name Name of the device provided when registering it.

type Type of the device provided when registering it.

manufacturer Manufacturer name provided when registering.

createdAt The time the device was registered using ISO8601 format.

description Description of the device provided.

attributes The device attributes. Name value pair provided when registering the device.

enterpriseId Enterprise Id of Enterprise that device belongs to

Example

POST Request

[https://\{server-url}/devices/move/153ffceb982745e8b1e8abacf9c217f3
REQUEST PAYLOAD: enterpriseId in JSON (or XML) format as shown in the example above

JSON Response

{
 "attributes": [],
 "createdAt": "2014-12-03T08:55:14UTC",
 "deviceId": "153ffceb982745e8b1e8abacf9c217f3",
 "href": "https://{server-url}/devices/153ffceb982745e8b1e8abacf9c217f3",
 "name": "GT-I9295",
 "description": "The main server for process data",
 "type": "MobilePhone",
 "manufacturer": "Samsung",
 "enterpriseId": "E50"
}

XML Response

http://en.wikipedia.org/wiki/ISO_8601

25

<device>
 <attributes>
 <attribute key="Application Version" value="0.2.3"/>
 <attribute key="Chip" value="Corei7"/>
 </attributes>
 <createdAt>2014-12-03T10:44:03UTC</createdAt>
 <description>The main server for process data</description>
 <deviceId>153ffceb982745e8b1e8abacf9c217f3</deviceId>
 <enterpriseId>E50</enterpriseId>
 <href>https://{server-url}/devices/153ffceb982745e8b1e8abacf9c217f3</href>
 <name>OPC Server</name>
 <type>PC</type>
 <manufacturer>HP</manufacturer>
</device>

3.8 Delete device

URL: /devices/deviceId/
HTTP method: DELETE
Authentication Required: Yes
Delete device
Example

DELETE Request

[https://\{server-url}/devices/153ffceb982745e8b1e8abacf9c217f3
REQUEST PAYLOAD: NONE

JSON Response

NONE

XML Response

NONE

When any of the required fields are not present or the parameter constraints are violated, an HTTP
status code 400 is returned along with an error object in the response payload. For more details
see Error Handling chapter.

26

•
•
•
•
•

4 Reading and writing data

Data values are written to the device's datanodes. Each datanode is identified by its name and the
path specified by the client. The datanode is created the first time it is encountered by the server.
Intermediate nodes are also created if a path is specified the first time the datanode is
encountered. The full path to the datanode should be specified when the datanode is to be read
from.

Data types

1 Data types

Datanote data type Type field in response Format

Double
(64bits)

double Numerical value

Long (263-1 to -263) 64bits long Numerical value

String string Any Unicode character except " or \ which are
escaped by |

Boolean boolean "true" or "false" without quotation marks

Binary binary Base64 encoded

4.1 Writing data

URL: /process/write/deviceId/
HTTP method: POST
Authentication Required: Yes
The user must write the provided values to the corresponding data node. A new data node is
created when the server has not received a value prior to this, with the same name and path, if any.
Subsequent writings always include the same name and path to write to the same data node.

Parameter Description Example

deviceId The target device ID.

Data to be written The arrays of data object to be saved. Each of the
objects has the following attributes:

name (required)
path (optional)
v- value (required)
ts –unix timestamp (optional)
unit (optional)
<ac:structured-macro
ac:name="unmigrated-wiki-markup"
ac:schema-version="1" ac:macro-
id="b26feff9-595c-4882-8764-
f4c2a435b4d9"><ac:plain-text-body><!
[CDATA[* dataType (optional)

[{
"name": "Temperature",
"path": "MainEngine/Core",
"v": 60,
"ts": 1414488510057,
"unit": "c"},
{"name":"Latitude","v":63, "dataType":"
long" },
{"name":"Latitude","v": 65},
{"name": "Latitude","v": 67}]

27

•

•

•

•

•
•

Parameter Description Example

Name
(string:100)

A short description of the datanode. A device's
datanode is uniquely identified with its name and
path. The value is case insensitive.

Path:
(String:1000)

Forward slash separates the list of paths
to be created to get to the datanode. The
path can only consist of a maximum of 10
components. A slash at the beginning is
simply ignored. For example, the paths /
Engine/Cabin and Engine/Cabin are
equivalent to each other.
When viewed from the WRM Desktop UI,
intermediate nodes as specified by the
path are created between the devices and
the datanode in a nested tree structure.
Each component of the path can only
contain alphanumeric values A-Za-z0-9.
The value is case insensitive.
An empty path or a missing path
attributes are equivalent to each other.

Engine/Cabin/

v The value to be written. This must be applicable
to the datatype, if provided.

unit
(String:10)

The unit associated with the data, preferably 1 or
2 characters.

c,Hz

ts
(long)

Unix Timestamp. The number of milliseconds
since the Epoch. When a timestamp is missing, the
current timestamp is automatically used.

1414488510057

dataType When the datatype is not provided, the possible
data type is inferred from the value first received
by the server.

Possible values are: long, double, boolean, string
or binary. The value is case insensitive.

When any of the required fields are not present or the parameter constraints are violated, an HTTP
status code 400 is returned along with an error object in the response payload. For more details,
see the Error Handling chapter below.

Notice: A single request payload can be at maximum 200 kilobytes. Bigger requests will result to
an error code of 8000.

Response to write to the datanodes of a device

Field Description

writeresult object An array of response objects, each containing:

href
writtenCount

totalWritten The total number of data points written.

href The URL to read from the datanode targeted in the write.

writtenCount The number of values written to that particular datanode.

Example of an invalid path:
1/2/3/4/5/6/7/8/9/10/11

http://en.wikipedia.org/wiki/Unix_time

28

Example

POST Request

[https://\{server-url}/process/write/153ffceb982745e8b1e8abacf9c217f3
REQUEST PAYLOAD as shown in example above.

JSON Response

{"writeResults":
 [{
 "href": "https://{server-url}/process/read/153ffceb982745e8b1e8abacf9c217f3/?
datanodes=MainEngine/Core/Temperature",
 "writtenCount": 1
 },
 {
 "href": "https://{server-url}/process/read/153ffceb982745e8b1e8abacf9c217f3/?datanodes=/
Latitude",
 "writtenCount": 3
 }
],
 "totalWritten": 4
}

XML Response

<writeResults>
 <writeResult>
 <href https://{server-url}/process/read/153ffceb982745e8b1e8abacf9c217f3/?
datanodes=MainEngine/Core/Temperature </href>
 <writtenCount>1</writtenCount>
 </writeResult>
 <writeResult>
 <href> https://{server-url}/process/read/153ffceb982745e8b1e8abacf9c217f3/?datanodes=/
Latitude </href>
 <writtenCount>3</writtenCount>
 </writeResult>
 <totalWritten>4</totalWritten>
</writeResults>

4.2 Reading data

URL: /process/read/deviceId/
HTTP method: GET
Authentication Required: Yes
This call reads device datanode and/or virtual data tag values.

29

•
•
•
•

Parameter Description Example

format The format: json or xml; the default format is json. /process/read/deviceId?
datanodes=latitude&format=xml

deviceId The target device ID.

datanodes Comma separated datanode names or full paths to be read
from. If the name provided matches more than one datanode,
they are all included in the response. The number of datanodes
in the path should not exceed 10.

If there are multiple datanodes with the same name, include the
path to be more specific. For example, two datanodes named
"Temp", one having the path "Engine/core" and the second one
having no path. The specific read path will be ?datanode=/
Engine/coreTemp and ?datanodes=/Temp, respectively. The
read path ?datanodes=Temp will return results for both
datanodes.

/process/read/deviceId?
datanodes
=latitude,longitude,altitude

vtags Comma separated virtual data tag names to be read from. The
number of virtual data tags and data nodes in total should not
exceed 10.

/process/read/deviceId?
vtags=virtualtag1,virtualtag2

fromdate
(long)

Unix Timestamp. The number of milliseconds since the Epoch. It
defines the time from which the data is obtained. It should be
provided, if there is a todate.

/process/read/deviceId?
datanodes=longitude&fromdate=
1415260152284

todate
(long)

Unix Timestamp. The number of milliseconds since the Epoch. It
defines the time to which the data read ends. It defaults to the
current time if this value is not not provided and a fromdate
exists. If neither the fromdate and todate are provided, the latest
value is returned.

/process/read/deviceId?
datanodes=longitude&fromdate=
1415260152284&todate=
1417609677

limit
(integer)

The maximum number of data points returned for each
datanode queried.
It defaults to 1000 if not provided and has a maximum value of
10,000.

/process/read/deviceId?
datanodes=longitude&limit=3

order It orders the values by timestamp, in either ascending or
descending order. The possible values are ascending and
descending. The default is ascending.

/process/read/deviceId?
datanodes=longitude&order=
descending

When any of the required fields are not present or the parameter constraints are violated, an HTTP
status code 400 is returned along with an error object in the response payload. For more details,
see the Error Handling chapter below.

Response to read the datanodes of a device

Field Description

readresult Object The array of objects contain:

name
type
unit
value object containing arrays of v and ts fields

name The name of the datanode.

path The path to the datanode, if any.

http://en.wikipedia.org/wiki/Unix_time
http://en.wikipedia.org/wiki/Unix_time

30

Field Description

v The value at timestamp ts.

ts The timestamp associated with the value. This is always added even if the client
did not include a timestamp at the time of writing.

unit The unit associated with the data node.

Example

GET Request

[https://\{server-url}/process/read/153ffceb982745e8b1e8abacf9c217f3?datanodes=MainEngine/Core/
Temperature,Latitude&fromdate=1417636256406&limit=3
REQUEST PAYLOAD: NONE

JSON Response

{
 " datanodeReads": [{
 "name": "Latitude",
 "dataType": "long",
 "values": [{
 "v": "60","ts": 1417636260139}]
 },
 {
 "name": "Temperature",
 "path": "Engine/Core",
 "unit": "c",
 "dataType": "double",
 "values": [
 {"v": "65","ts": 1417636260152},
 {"v": "63","ts": 1417636260152},
 {"v": "73","ts": 1417636260152}]
 }],
 "href":"https://{server-url}/process/read/153ffceb982745e8b1e8abacf9c217f3?
datanodes=MainEngine/Core/Temperature,Latitude&fromdate=1417636256406&limit=3"
}

XML Response

31

<readResults>
 <href>https://{server-url}/process/read/153ffceb982745e8b1e8abacf9c217f3?
datanodes=MainEngine/Core/Temperature,Latitude&fromdate=1417636256406&limit=3</href>
 <datanodeReads dataType="long">
 <name>Latitude</name>
 <values>
 <value>
 <v>60</v>
 <ts>1417636260139</ts>
 </value>
 </values>
 </datanoderead>
 <datanoderead unit="c" dataType="double">
 <name>Temperature</name>
 <path>Engine/Core</path>
 <values>
 <value>
 <v>65</v>
 <ts>1417636260152</ts>
 </value>
 <value>
 <v>67</v>
 <ts>1417636260152</ts>
 </value>
 <value>
 <v>73</v>
 <ts>1417636260152</ts>
 </value>
 </values>
 </datanoderead>
</readResults>

4.3 Reading statistical data

URL: /stat/read/deviceId/
HTTP method: GET
Authentication Required: Yes
Read statistical data node and/or virtual data tag values from a device.

Parameter Description Example

format Format (json, xml or csv) default is json. /stat/read/deviceId?
datanodes=longitude&fromdate=
1415260152284&todate=
1417609677000&grouping=hour
&format=xml

deviceId The target device id.

32

•
•
•
•
•

Parameter Description Example

datanodes Comma separated data node names or fullpaths to be read from.
If the name provided matches more than one datanode, they are
all included in the response. The number of datanodes in the
path should not exceed 10.

If there are multiple data node with the same name, include the
path to be more specific. For example two datanodes with name
"Temp" with path "Engine/core" and with no path. The specific
read path will be ?datanode=/Engine/coreTemp and ?
datanodes=/Temp respectively. The read path ?datanodes=Temp
will return results for both datanodes.

/stat/read/deviceId?
datanodes=longitude&fromdate=
1415260152284&todate=
1417609677000&grouping=hour

vtags Comma separated virtual data tag names to be read from. The
number of virtual data tags and data nodes in total should not
exceed 10.

/stat/read/deviceId?
vtags=virtualtag1,virtualtag2
&fromdate=1415260152284
&todate=1417609677000
&grouping=hour

fromdate
(long)

Unix Timestamp. Number of milliseconds since the Epoch.
Defines the time from which the data is obtained. Must be
provided. The time range defined by fromdate and todate is
extended automatically to contain at least one unit of grouping
interval.

/stat/read/deviceId?
datanodes=longitude&fromdate=
1415260152284&todate=
1417609677000&grouping=hour

todate
(long)

Unix Timestamp. Number of milliseconds since the Epoch.
Defines the time to which the data read ends. Must be provided.
The time range defined by fromdate and todate is extended
automatically to contain at least one unit of grouping interval.

/stat/read/deviceId?
datanodes=longitude&fromdate=
1415260152284&todate=
1417609677000&grouping=hour

order Orders the values by timestamp either in ascending or
descending order. Possible values are ascending and descending.
Default is ascending.

/stat/read/deviceId?
datanodes=longitude&fromdate=
1415260152284&todate=
1417609677000&grouping=hour
&order=descending

grouping Determines the grouping type for the statistical data. Possible
values are: "minute", "hour", "day", "week", "month","year".
Must be provided.

/stat/read/deviceId?
datanodes=longitude&fromdate=
1415260152284&todate=
1417609677000&grouping=hour

When any of the required fields are not present or the parameter constraints are violated, an HTTP
status code 400 is returned along with an error object in the response payload. For more details
see the Error Handling chapter.
Response to read statistical data from device's data nodes

Field Description

datanodeReads Array of objects containing

name
dataType
unit
path
values

name The name of the data node

datatype The data type of the data node.

http://en.wikipedia.org/wiki/Unix_time
http://en.wikipedia.org/wiki/Unix_time

33

•
•
•
•
•
•

Field Description

unit The unit associated with the data node.

path The path to the data node if any.

values Array of value objects containing

min (left out if interval had no values)
max (left out if interval had no values)
avg (left out if interval had no values)
count
sum
ts

min The minimum value of the data node in the value object's time inteval.

max The maximum value of the data node in the value object's time inteval.

avg The average value of the data node in the value object's time inteval.

count The total number of values for the data node in the value object's time inteval.

sum The sum of values for the data node in the value object's time inteval.

ts The start timestamp of the value object's time interval.

Example

GET Request

[https://\{server-url}/stat/read/dUcYTaFfXD69gCSQYAVjS8?
datanodes=Pressure&fromdate=1483228800000&todate=1550831791000&grouping=year
REQUEST PAYLOAD: NONE

JSON Response

34

{
 "href": "https://{server-url}/stat/read/dUcYTaFfXD69gCSQYAVjS8?
todate=1550831791000&grouping=year&datanodes=Pressure&fromdate=1483228800000",
 "datanodeReads": [
 {
 "dataType": "double",
 "unit": "bar",
 "name": "Pressure",
 "values": [
 {
 "count": 0,
 "sum": 0,
 "ts": 1483228800000
 },
 {
 "min": 34.5,
 "max": 65.7,
 "avg": 45.0,
 "count": 6546,
 "sum": 7674.6,
 "ts": 1514764800000
 },
 {
 "min": 32.5,
 "max": 67.8,
 "avg": 46.4,
 "count": 3423,
 "sum": 7564.2,
 "ts": 1546300800000
 }
]
 }
]
}

XML Response

35

•
•
•
•

<readResults>
 <href>https://{server-url}/stat/read/dUcYTaFfXD69gCSQYAVjS8?
todate=1550831791000&format=xml&grouping=year&datanodes=Pressure&fromdate=1483228800000
</href>
 <datanodeReads dataType="double" unit="bar">
 <name>Pressure</name>
 <values>
 <value>
 <count>0</count>
 <sum>0</sum>
 <ts>1483228800000</ts>
 </value>
 <value>
 <min>34.5</min>
 <max>65.7</max>
 <avg>45.0</avg>
 <count>6546</count>
 <sum>7674.6</sum>
 <ts>1514764800000</ts>
 </value>
 <value>
 <min>32.5</min>
 <max>67.8</max>
 <avg>46.4</avg>
 <count>3423</count>
 <sum>7564.2</sum>
 <ts>1546300800000</ts>
 </value>
 </values>
 </datanodeReads>
</readResults>

4.4 Datanode creation

URL: /process/create/deviceId/
HTTP method: POST
Authentication Required: Yes
Request creates a datanode with the given attributes.

Parameter Description Example

deviceId The target device ID.

Data to be written An object with the following attributes:

name (required)
path (optional)
unit (optional)
dataType (required)

{
"name": "Temperature",
"path": "MainEngine/Core",
"unit": "c",
"dataType":"long"
}

36

•

•

•

•

Parameter Description Example

Name
(string:100)

A short description of the datanode. A device's
datanode is uniquely identified with its name and path.
The value is case insensitive.

Path:
(String:1000)

Forward slash separates the list of paths to be
created to get to the datanode. The path can
only consist of a maximum of 10 components.
A slash at the beginning is simply ignored. For
example, the paths /Engine/Cabin and Engine/
Cabin are equivalent to each other.
When viewed from the WRM Desktop UI,
intermediate nodes as specified by the path are
created between the devices and the datanode
in a nested tree structure.
Each component of the path can only contain
alphanumeric values A-Za-z0-9. The value is
case insensitive.
An empty path or a missing path attributes are
equivalent to each other.

Engine/Cabin/

Note: Example of an invalid
path:
1/2/3/4/5/6/7/8/9/10/11

unit
(String:10)

The unit associated with the data, preferably 1 or 2
characters.

c,Hz

dataType When creating a datatag the dataType must be
provided.

Possible values are: long, double,
boolean, string or binary.

When any of the required fields are not present or the parameter constraints are violated, an HTTP
status code 400 is returned along with an error object in the response payload. For more details,
see the Error Handling chapter below.
Response to create datanode for a device

Field Description

mid Measurement id of the created datanode

name Name of the datanode

unit Unit of the datanode

dataType Data type of the datanode

path Path of the datanode

Example

POST Request

[https://\{server-url}/process/create/153ffceb982745e8b1e8abacf9c217f3
REQUEST PAYLOAD as shown in example above.

JSON Response

37

{
"name": "Temperature",
"path": "MainEngine/Core",
"unit": "c",
"dataType":"long",
"mid": 100
}

4.5 Example of a device with hierarchical components

A device with hierarchical components can be easily modelled using the data node's path. Such a
structure is illustrated here with a contrived example of an aircraft with a main engine and an
auxiliary engine. The temperature and airflow in the main engine are to be measured, while the
RPM and the temperature are measured in the auxiliary engine, at the same time. The aircraft also
has a latitude and longitude measurement reading as shown in the figure below:

6 Example of a device with hierarchical components

First, the device is registered with the name "Aircraft" and manufacturer "Boeing", for example, after
which a device ID is obtained and stored.
With the device ID, the main engine core temperature is written to a datanode named Temperature
with a path MainEngine/Core. The auxiliary engine core temperature is written to a datanode
named Temperature also, but with a path Auxiliary/Core, while the aircraft Latitude is named
Latitude, with no path provided, as listed in the table below:

Measurement point Name Path

MainEngine Core Temperature Temperature MainEngine/Core

AuxiliaryEngine Core Temperature Temperature AuxiliaryEngine/Core

38

Measurement point Name Path

Latitude Latitude

Similarly, the Airflow and RPM are written with the same name but to path MainEngine/Core and to
path Auxiliary/Core, respectively. To read a particular datanode's values, the full path to the
datanode in the form {PATH} /{NAME} should be provided, therefore to read the main engine core
temperature for example, the URL to use is:
/process/read/deviceId/?datanodes=MainEngine/Core/Temperature

To read the main engine core temperature, latitude, longitude and auxiliary RPM datanodes, the
URL to use is:
/process/read/deviceId/?datanodes=MainEngine/Core/
Temperature,Latitude,Longitude,AuxiliaryEngine/Core/RPM

The datanodes could as well be named MainEngineCoreTemperature and
AuxillaryEngineCoreTemperature for example, however this does not lean itself to aggregate
queries and viewing the aircraft nested structure in the WRM Desktop UI. An example of an
aggregated query will be to read all datanodes named temperature for the device. Using the URL /
process/read/deviceId/?datanodes=Temperature, the server will return the values for both the
Main Engine and Auxiliary Engine core Temperature data nodes.

It should be noted that aggregated write request is not allowed, the path must always be
specified if any.

39

•
•
•
•
•

5 Enterprise management

Enterprises can be managed by the enterprise API.
Get root enterprises

Returns a list consisting of the root enterprises the client has access to.
URL: /enterprises
HTTP method: GET
Authentication Required: Yes

Parameter Description Example

format Format (json or xml) default is json /enterprises?format=xml

limit
(integer)

Number of results to return. Maximum of 100, defaults
to 10 when none is provided

/enterprises?limit=5

offset
(integer)

Number of result to skip from the beginning. /enterprises?offset=3

Paging example:
/enterprises?offset=0&limit=100
/enterprises?offset=100&limit=100

When any of the required fields are not present or the parameter constraints are violated, an HTTP
status code 400 is returned along with an error object in the response payload. For more details
see the Error handling chapter.

Response to get root enterprises

Field Description

offset Number of results skipped from the beginning

limit Amount of results per page

fullSize The total number of root enterprises that the client has access to.

items List of enterprise objects. Each of the objects contain

href
name
resourceId
hasSubEnterprises
attributes

href URL to the enterprise

name Name of the enterprise.

resourceId The resource id of the enterprise.

hasSubEnterprises Boolean (true/false) result if enterprise has sub enterprises.

attributes Attributes for the enterprise (if exists)

40

Example

GET Request

[https://\{server-url}/enterprises
REQUEST PAYLOAD: NONE

JSON Response

{
 "fullSize": 28,
 "limit": 10,
 "offset": 0,
 "items": [
 {
 "href": "https://{server-url}/enterprises/E1234",
 "name": "Enterprise 1",
 "resourceId": "E1234",
 "hasSubEnterprises": true,
 "attributes": [{
 "key": "key1",
 "value": "value1"
 },
 {
 "key": "key2",
 "value": "value2"
 }]
 },
 {
 "href": "https://{server-url}/enterprises/E4567",
 "name": "Enterprise 2",
 "resourceId": "E4567",
 "hasSubEnterprises": false
 },

]
}

XML Response

41

<enterprisesResult>
 <items>
 <enterprise>
 <href>https://{server-url}/enterprises/E1234</href>
 <name>Enterprise 1</name>
 <resourceId>E1234</resourceId>
 <hasSubEnterprises>true</hasSubEnterprises>
 <attributes>
 <attribute key="key1" value="value1"/>
 <attribute key="key2" value="value2"/>
 </attributes>

 </enterprise>
 <enterprise>
 <href>https://{server-url}/enterprises/E4567</href>
 <name>Enterprise 2</name>
 <resourceId>E4567</resourceId>
 <hasSubEnterprises>false</hasSubEnterprises>
 </enterprise>
 <!-- more enterprises -->
 </items>
 <fullSize>28</fullSize>
 <limit>10</limit>
 <offset>0</offset>
</enterprisesResult>

5.1 Get enterprises under an enterprise

Returns a list of enterprises under the enterprise with the provided resource id. Enterprise's id can
be provided either with or without the "E" prefix.
URL: /enterprises/enterpriseId
HTTP method: GET
Authentication Required: Yes

Parameter Description Example

format Format (json or xml) default is json /enterprises/enterpriseId?format=xml

limit
(integer)

Number of results to return. Maximum of 100, defaults to
10 when none is provided

/enterprises/enterpriseId?limit=5

offset
(integer)

Number of result to skip from the beginning. /enterprises/enterpriseId?offset=3

Paging example:
/enterprises/enterpriseId?
offset=0&limit=100
/enterprises/enterpriseId?
offset=100&limit=100

42

•
•
•
•
•

When any of the required fields are not present or the parameter constraints are violated, an HTTP
status code 400 is returned along with an error object in the response payload. For more details
see the Error handling chapter.

Response to get enterprises under enterprise

Field Description

offset Number of results skipped from the beginning

limit Amount of results per page

fullSize The total number of root enterprises that the client has access to.

items List of enterprise objects. Each of the objects contain

href
name
resourceId
hasSubEnterprises
attributes

href URL to the enterprise

name Name of the enterprise.

resourceId The resource id of the enterprise.

hasSubEnterprises Boolean (true/false) result if enterprise has sub enterprises.

attributes Attributes for the enterprise (if exists)

Example

GET Request

[https://\{server-url}/enterprises/1234
REQUEST PAYLOAD: NONE

JSON Response

43

{
 "fullSize": 15,
 "limit": 10,
 "offset": 0,
 "items": [
 {
 "href": "https://{server-url}/enterprises/E5678",
 "name": "Enterprise 3",
 "resourceId": "E5678",
 "hasSubEnterprises": true,
 "attributes": [{
 "key": "key1",
 "value": "value1"
 },
 {
 "key": "key2",
 "value": "value2"
 }]
 },
 {
 "href": "https://{server-url}/enterprises/E6789",
 "name": "Enterprise 4”,
 "resourceId": "E6789",
 "hasSubEnterprises": false
 },

]
}

XML Response

44

•
•
•
•

<enterprisesResult>
 <items>
 <enterprise>
 <href>https://{server-url}/enterprises/E5678</href>
 <name>Enterprise 3</name>
 <resourceId>E5678</resourceId>
 <hasSubEnterprises>true</hasSubEnterprises>
 <attributes>
 <attribute key="key1" value="value1"/>
 <attribute key="key2" value="value2"/>
 </attributes>
 </enterprise>
 <enterprise>
 <href>https://{server-url}/enterprises/E6789</href>
 <name>Enterprise 4</name>
 <resourceId>E6789</resourceId>
 <hasSubEnterprises>false</hasSubEnterprises>
 </enterprise>
 <!-- more enterprises -->
 </items>
 <fullSize>15</fullSize>
 <limit>10</limit>
 <offset>0</offset>
</enterprisesResult>

5.2 Create enterprise

Creates enterprise under an enterprise.
URL: /enterprises
HTTP method: POST
Authentication Required: Yes

Parameter Description Example

Object A Json object with the following fields:

parentEnterpriseId (required)
name (required *)
attributes
getOrCreateFilter

{
 "name": "Enterprise 2",
 "parentEnterpriseId": "E123",
 "attributes":[
 {
 "key":"key1",
 "value":"value1"
 }
]
}

parentEnterpris
eId (required)

The parent enterprise id. E123 or 123

45

Parameter Description Example

name (required
*)

Name for the new enterprise Enterprise 2

attributes Attributes for the new enterprise

[{
 "key": "key1",
 "value": "value1"
},
{
 "key": "key2",
 "value": "value2"
}]

getOrCreateFilt
er

Filter for getting enterprise and creating it only if it doesn't
already exist. If enterprise matching the filter is found, it is not
created but only returned as a response to this request. name or
attributes or any combination of those are required. This allows
to filter only by name or attributes and to allow duplicate entries
on any of those if desired. If name is not provided here it needs
to be provided as regular parameter. Values in filter overwrite
regular name and attributes if they are set. Search for name is
case insensitive and search for attributes is case sensitive.
NOTE: Searches only enterprises directly one level under the
provided parent enterprise.

{
 "name": "Enterprise 2",
 "attributes": [{
 "key": "key1",
 "value": "value1"
 },
 {
 "key": "key2",
 "value": "value2"
 }]
}

* Required if not present in getOrCreateFilter.

When any of the required fields are not present or the parameter constraints are violated, an HTTP
status code 400 is returned along with an error object in the response payload. For more details
see the Error handling chapter.

Response to create enterprise

Field Description

attributes Attributes for the enterprise (if exists)

created Boolean value if a new enterprise was created (only present when
getOrCreateFilter is used).

hasSubEnterprises Boolean (true/false) result if enterprise has sub enterprises.

href URL to the enterprise

name Name of the enterprise.

resourceId The resource id of the enterprise.

Example

46

POST Request

[https://\{server-url}/enterprises
REQUEST PAYLOAD is shown in the example above

JSON Response

{
 "attributes": [
 {
 "key": "key1",
 "value": "value1"
 }
],
 "hasSubEnterprises": false,
 "href": "https://{server-url}/enterprises/E1234",
 "name": "Enterprise 2",
 "resourceId": "E1234"
}

47

6 Reading events

Active and inactive events and event history can be read with the events API.
Read active and inactive events

Returns list of active and inactive events that have not been acknowledged and are visible to the
user. The result list paging is controlled by the limit and firstRow parameters. If events API is called
without firstRow parameter the first page is returned. Next page can be queried using the
response's lastRowId as the firstRow parameter for the next query.
URL: /events
HTTP method: GET
Authentication Required: Yes

Paramete
r

Description Example

format Format (json, xml or csv) default is json /events?format=xml

limit
(integer)

Number of results to return. Maximum of 10000, defaults to
1000 when none is provided

/events?limit=5

resourceI
ds

Comma separated list of resource ids to get the events from. /events?resourceIds=X123,E567

firstRow The uuid of the first event to start the events listing from (that
event is not included in the response).

/events?firstRow=9c-7ffffe95e0aaf511-E4702

startTime Unix Timestamp. Number of milliseconds since the Epoch.
Defines the time from which the data is obtained. The time
range defined by startTime and endTime. Default value is one
year earlier than the current date.

/events?startTime=1555998429000

endTime Unix Timestamp. Number of milliseconds since the Epoch.
Defines the time from which the data is obtained. The time
range defined by startTime and endTime. Default value is the
current date.

/events?endTime=1555998429000

When any of the required fields are not present or the parameter constraints are violated, an HTTP
status code 400 is returned along with an error object in the response payload. For more details
see the Error handling chapter.

Response to get events

Field Description

lastRowId The uuid of the last event in the response. This value can be used as the firstRow query parameter for a following
call to continue the list from the current response's list.

http://en.wikipedia.org/wiki/Unix_time
http://en.wikipedia.org/wiki/Unix_time

48

•
•
•
•
•
•
•
•
•
•
•
•

items List of event objects. Each of the objects contain

ackMode
description
eventId
eventState
eventUuid
group
metadata
resourceId
severity
source
startTime
type

Example

GET Request

[https://\{server-url}/events
REQUEST PAYLOAD: NONE

JSON Response

{
 "items": [
 {
 "ackMode": "ANY",
 "description": "test event",
 "eventId": 156,
 "eventState": "ACTIVE",
 "eventUuid": "9c-7ffffe95d067d839-E4702",
 "group": "test event group",
 "resourceId": "E4702",
 "severity": "NORMAL",
 "source": "Enterprise: Test Enterprise",
 "startTime": 1555576661958,
 "type": "WARNING"
 }
],
 "lastRowId": "9c-7ffffe95d067d839-E4702"
}

XML Response

49

<eventsResult>
 <items>
 <event>
 <ackMode>ANY</ackMode>
 <description>test event</description>
 <eventId>156</eventId>
 <eventState>ACTIVE</eventState>
 <eventUuid>9c-7ffffe95d067d839-E4702</eventUuid>
 <group>test event group</group>
 <metadata/>
 <resourceId>E4702</resourceId>
 <severity>NORMAL</severity>
 <source>Enterprise: Test Enterprise</source>
 <startTime>1555576661958</startTime>
 <type>WARNING</type>
 </event>
 </items>
 <lastRowId>9c-7ffffe95d067d839-E4702</lastRowId>
</eventsResult>

6.1 Read event history

Returns list of events that have been acknowledged and are visible to the user. The result list
paging is controlled by the limit and firstRow parameters. If events history API is called without
firstRow parameter the first page is returned. Next page can be queried using the response's
lastRowId as the firstRow parameter for the next query.
URL: /events/history
HTTP method: GET
Authentication Required: Yes

Parameter Description Example

format Format (json, xml or csv) default is json /events/history?format=xml

limit
(integer)

Number of results to return. Maximum of 10000,
defaults to 1000 when none is provided

/events/history?limit=5

resourceIds Comma separated list of resource ids to get the events
from.

/events/history?resourceIds=X123,E567

firstRow The uuid of the first event to start the events listing
from (that event is not included in the response).

/events/history?firstRow=9c-7ffffe95e0aaf511-E4702

startTime Unix Timestamp. Number of milliseconds since the
Epoch. Defines the time from which the data is
obtained. The time range defined by startTime and
endTime. Default value is one year earlier than the
current date.

/events/history?startTime=1555998429000

http://en.wikipedia.org/wiki/Unix_time

50

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Parameter Description Example

endTime Unix Timestamp. Number of milliseconds since the
Epoch. Defines the time from which the data is
obtained. The time range defined by startTime and
endTime. Default value is the current date.

/events/history?endTime=1555998429000

acknowledge
By

User id for the user that has acknowledged the events
to filter the events.

/events/history?acknowledgeBy=TESTUSER

comment Comment text or part of the comment text to filter the
events.

/events/history?comment=test

When any of the required fields are not present or the parameter constraints are violated, an HTTP
status code 400 is returned along with an error object in the response payload. For more details
see the Error handling chapter.

Response to get events history

Field Description

lastRowId The uuid of the last event in the response. This value can be used as the firstRow query
parameter for a following call to continue the list from the current response's list.

items List of event objects. Each of the objects contain

ackMode
acknowledgeBy
akcnowledgeTime
comment
description
endTime
eventId
eventState
eventUuid
group
metadata
resourceId
severity
source
startTime
type

Example

GET Request

[https://\{server-url}/events/history
REQUEST PAYLOAD: NONE

JSON Response

http://en.wikipedia.org/wiki/Unix_time

51

{
 "items": [
 {
 "ackMode": "ANY",
 "acknowledgeBy": "TESTUSER",
 "acknowledgeTime": 1555404837120,
 "comment": "test",
 "description": "test desc",
 "endTime": 1555393443075,
 "eventId": 158,
 "eventState": "INACTIVE",
 "eventUuid": "9e-7ffffe95db6690fe-E4702",
 "group": "test group",
 "resourceId": "E4702",
 "severity": "HIGH",
 "source": "Enterprise: Test Enterprise",
 "startTime": 1555392196353,
 "type": "ALARM"
 }
],
 "lastRowId": "9e-7ffffe95db6690fe-E4702"
}

XML Response

<eventsResult>
 <items>
 <event>
 <ackMode>ANY</ackMode>
 <acknowledgeBy>TESTUSER</acknowledgeBy>
 <acknowledgeTime>1555404837120</acknowledgeTime>
 <comment>test</comment>
 <description>test desc</description>
 <endTime>1555393443075</endTime>
 <eventId>158</eventId>
 <eventState>INACTIVE</eventState>
 <eventUuid>9e-7ffffe95db6690fe-E4702</eventUuid>
 <group>test group</group>
 <metadata/>
 <resourceId>E4702</resourceId>
 <severity>HIGH</severity>
 <source>Enterprise: Test Enterprise</source>
 <startTime>1555392196353</startTime>
 <type>ALARM</type>
 </event>
 </items>
 <lastRowId>9e-7ffffe95db6690fe-E4702</lastRowId>
</eventsResult>

52

•
•
•
•
•
•

7 Dashboard management

Dashboard API allows users to list and create dashboards.

7.1 List dashboards

Lists dashboards from resources.
URL: /resources/dashboards
HTTP method: GET
Authentication Required: Yes

Parameter Description Example

format Format (json or xml) default is json /resources/dashboards?format=xml

limit
(integer)

Number of results to return. Maximum of 100,
defaults to 100 when none is provided

/resources/dashboards?limit=5

offset
(integer)

Number of results to skip from the beginning. /resources/dashboards?offset=3

Paging example:
/resources/dashboards?
offset=0&limit=100
/resources/dashboards?
offset=100&limit=100

resourceIds (required) The ids of the resources to fetch the dashboards
from.

/resources/dashboards?
resourceIds=E123,X234

When any of the required fields are not present or the parameter constraints are violated, an HTTP
status code 400 is returned along with an error object in the response payload. For more details
see the Error handling chapter.

Response to list dashboards

Field Description

offset Number of results skipped from the beginning

limit Number of results per page

fullSize The total number of dashboards found for the request.

items List of dashboard objects. Each of the objects contain

dashboardId
dashboardTemplateId (if based on template)
dashboardTemplateName (if based on template)
href
name
resourceId

dashboardId The id of the dashboard.

dashboardTemplateId The id of the dashboard template the dashboard is based on.

dashboardTemplateName The name of the dashboard template the dashboard is based on.

53

Field Description

href Link to the dashboard in the IoT-Ticket accessible by web browser.

name The name of the dashboard.

resourceId The resource id of the resource the dashboard belongs to.

Example

GET Request

[https://\{server-url}/resources/dashboards?resourceIds=E123
REQUEST PAYLOAD: NONE

JSON Response

{
 "fullSize": 2,
 "limit": 100,
 "offset": 0,
 "items": [
 {
 "dashboardId": "931HxVmPnL8lVNFFjZ3vL7",
 "dashboardTemplateId": 1351,
 "dashboardTemplateName": "Template 1",
 "href": "https://{server-url} /Dashboard/#desktop/931HxVmPnL8lVNFFjZ3vL7/1",
 "name": "Dashboard 1",
 "resourceId": "E123"
 },
 {
 "dashboardId": "EmsF8TH6KrAx3UbYZxqqm5",
 "href": "https://{server-url}/Dashboard/#desktop/EmsF8TH6KrAx3UbYZxqqm5/1",
 "name": "Dashboard 2",
 "resourceId": "E123"
 }
]
}

XML Response

54

<dashboardsResult>
 <items>
 <dashboard>
 <dashboardId>931HxVmPnL8lVNFFjZ3vL7</dashboardId>
 <dashboardTemplateId>1351</dashboardTemplateId>
 <dashboardTemplateName>Template 1</dashboardTemplateName>
<href>http://{server-url}/Dashboard/#desktop/931HxVmPnL8lVNFFjZ3vL7/1</href>
 <name>Dashboard 1</name>
 <resourceId>E123</resourceId>
 </dashboard>
 <dashboard>
 <dashboardId>EmsF8TH6KrAx3UbYZxqqm5</dashboardId>
<href>http://{server-url}/Dashboard/#desktop/EmsF8TH6KrAx3UbYZxqqm5/1</href>
 <name>Dashboard 2</name>
 <resourceId>E123</resourceId>
 </dashboard>
 </items>
 <fullSize>2</fullSize>
 <limit>100</limit>
 <offset>0</offset>
</dashboardsResult>

7.2 List dashboard templates

Lists dashboard templates from enterprises. Shows also shared dashboard templates.
URL: /templates/dashboard
HTTP method: GET
Authentication Required: Yes

Parameter Description Example

format Format (json or xml) default is json /templates/dashboard?format=xml

limit
(integer)

Number of results to return. Maximum of 100,
defaults to 100 when none is provided

/templates/dashboard?limit=5

offset
(integer)

Number of results to skip from the beginning. /templates/dashboard?offset=3

Paging example:
/templates/dashboard?offset=0&limit=100
/templates/dashboard?
offset=100&limit=100

enterpriseIds The ids of the enterprises to fetch the templates
from (with or without the "E" prefix).

/templates/dashboard?
enterpriseIds=123,E234

When any of the required fields are not present or the parameter constraints are violated, an HTTP
status code 400 is returned along with an error object in the response payload. For more details

55

•
•
•
•

see the Error handling chapter.
Response to list dashboard templates

Field Description

offset Number of results skipped from the beginning

limit Number of results per page

fullSize The total number of dashboard templates found for the request.

items List of dashboard template objects. Each of the objects contain

dashboardTemplateId
name
enterpriseId
activeVersion

dashboardTemplateId The id of the dashboard template.

name The name of the dashboard template.

enterpriseId The resource id of the enterprise the dashboard template belongs to. (with shared
templates, this shows the real source enterpriseId unless the user does not have
access to that enterprise. In that case, enterpriseId is written as "shared")

activeVersion The current active version of the dashboard template.

Example

GET Request

[https://\{server-url}/templates/dashboard?enterpriseIds=E123
REQUEST PAYLOAD: NONE

JSON Response

56

{
 "fullSize": 2,
 "limit": 100,
 "offset": 0,
 "items": [
 {
 "dashboardTemplateId": 123,
 "name": "Template 1",
 "enterpriseId": "E123",
 "activeVersion": "2"
 },
 {
 "dashboardTemplateId": 234,
 "name": "Template 2",
 "enterpriseId": "E123",
 "activeVersion": "V1"
 }
]
}

XML Response

<dashboardTemplatesResult>
 <items>
 <dashboardTemplate>
 <dashboardTemplateId>123</dashboardTemplateId>
 <name>Template 1</name>
 <enterpriseId>E123</enterpriseId>
 <activeVersion>2</activeVersion>
 </dashboardTemplate>
 <dashboardTemplate>
 <dashboardTemplateId>234</dashboardTemplateId>
 <name>Template 2</name>
 <enterpriseId>E123</enterpriseId>
 <activeVersion>V1</activeVersion>
 </dashboardTemplate>
 </items>
 <fullSize>2</fullSize>
 <limit>10</limit>
 <offset>0</offset>
</dashboardTemplatesResult>

7.3 Create dashboard

Creates dashboard based on a template to a resource.
URL: /resources/dashboards

57

•
•
•
•
•

•
•

•

•

HTTP method: POST
Authentication Required: Yes

Parameter Description Example

Object A Json object with the following fields:

name
resourceId
templateId
createMode (optional)
viewMode (optional)

{
 "name": "Dashboard 1",
 "resourceId": "X123",
 "templateId": 234,
 "createMode": 1,
 "viewMode": 1
}

resourceId The target resource id. X123

name Name for the new dashboard Dashboard 1

templateId The dashboard template id to be used to create
the dashboard

234

createMode (optional) This determines the logic for verifying if the
dashboard needs to be created to the target
resource. Select either

0 to create always (default)
1 to create only if dashboard from
selected template does not already
exist in the target resource

0 (as integer)

viewMode (optional) This determines who can see the created
dashboard. Select either

0 for users with manager permissions
for the target resource or if the
dashboard is shared to them (default)
1 for possibility to view the dashboard
to all users who can see the resource

1 (as integer)

When any of the required fields are not present or the parameter constraints are violated, an HTTP
status code 400 is returned along with an error object in the response payload. For more details
see the Error handling chapter.

Response to create dashboard

Field Description

dashboardId Dashboard id of the created dashboard.

name Name of the created dashboard.

resourceId The resource id of the resource the dashboard belongs to.

templateId The dashboard template id of the created dashboard.

templateName The dashboard template name of the created dashboard.

58

Field Description

href Link to the dashboard in the IoT-Ticket accessible by web browser.

created Boolean value if a new dashboard was registered (only present when
createMode 1 is used).

Example

POST Request

[https://\{server-url}/resources/dashboards
REQUEST PAYLOAD is shown in the example above

JSON Response

{
 "dashboardId": "6z83eeNLnf2Ur4Cda5tRY8",
 "dashboardTemplateId": 234,
 "dashboardTemplateName": "Template 1",
 "href": "https://{server-url}/Dashboard/#desktop/6z83eeNLnf2Ur4Cda5tRY8/1",
 "name": "Dashboard 1",
 "resourceId": "X123"
}

59

•
•
•
•
•
•

8 Error handling

Errors to the API are appearing as a result of invalid credentials, unauthorized access to the target
resource, data format issues and sometimes internal server problems. Nonetheless, the API
always returns one of the following HTTP Status Codes:

200 – OK
201 – Created
400 – Bad Request
401 – Unauthorized
403 – Forbidden
500 – Internal Server error

In addition to checking the HTTP Status, developers should also view the response body entity that
will describe the error further, if any of the statuses above is received, except the OK status.

Field Description

description
(String:500)

This field provides a general description of the error.

code
(int)

See the Error codes table below for the codes and their meaning.

moreInfo
(String:255)

This field points to the documentation URL where a more detailed description
about the error code can be found.

apiver
(int)

The API version number.

Example

Response (HTTP STATUS 400)

{
 "description":"Request cannot be processed because you have exceeded the limit of 30 Megabytes.
Visit the WRM website to increase your allotted storage size",
 "code":8002,
 "moreInfo":"https://{server-url}/errorcodes",
 "apiver":1
}

Error codes and their meanings

Code Meaning

8000 Internal server error.

8001 Permission on requested resource is not sufficient.

8002 Quota violated.

60

Code Meaning

8003 Bad Parameters provided.

8004 Write failed.

61

9 Quota Management

When the client quota is exceeded, the API will return an HTTP response 403 Forbidden, even
though the request is valid. A message object is also returned that includes specific details on
which aspect of the quota has been violated. Note that in calculating storage size, 1 Megabyte of
data is regarded as 1048576 bytes and only the size of the values are calculated in the quota.

9.1 Get overall quota

URL: /quota/all
HTTP method: GET
Authentication Required: Yes
The call returns an overview of the client's resource usage, i.e. how much resources have been
used and the maximum amounts allowed.

Parameter Description Example

callback The JavaScript function to be executed when the
response is received (JSONP).

/quota/all?callback=foo
returns: foo(response data);

format The format: json or xml; the default format is json. /quota/all?format=xml

Response to get the overall quota

Field Description

totalDevices (integer) Total number of devices the client owns.

maxNumberOfDevices (integer) The maximum number of devices the client can create.

maxDataNodePerDevice (integer) The maximum of number of devices allowed for a client per datanode.

usedStorageSize (long) The total size in bytes that the client has written to the server.

maxStorageSize (long) The maximum size in bytes that the client has a right to write to the
server.

Example

Request

[https://\{server-url}/quota/all
REQUEST PAYLOAD:NONE

JSON Response

This is not the same as the total number of devices the client
has access to.

http://en.wikipedia.org/wiki/JSONP

62

{
 "totalDevices": 3,
 "maxNumberOfDevices": 5,
 "maxDataNodePerDevice": 10,
 "usedStorageSize": 1048576,
 "maxStorageSize": 52428800
}

XML Response

<quota>
 <totalDevices>3</totalDevices>
 <maxNumberOfDevices>5</maxNumberOfDevices>
 <maxDataNodePerDevice>10</maxDevicePerDataNode>
 <usedStorageSize>1048576</usedStorageSize>
 <maxStorageSize>52428800</maxStorageSize>
</quota>

9.2 Get device specific quota

URL: /quota/{deviceId}
HTTP method: GET
Authentication Required: Yes.

Parameter Description Example

callback The JavaScript function to be executed when the
response is received (JSONP).

/quota/all?callback=foo
returns: foo(response data);

format The format: json or xml; the default format is json. /quota/all?format=xml

Response to get a device specific quota

Field Description

totalRequestToday (integer) The total number of requests made through the API to the device. Any
serviced URL that includes the device ID is added to this count.

maxReadRequestPerDay (integer) The maximum number of read requests allowed to the client for this
device.

numberOfDataNodes (integer) The number of datanodes created for the specific device.

storageSize (long) The total size in bytes that the client has written to the server for the
specific device.

deviceId
(String:32)

The device ID.

Example

http://en.wikipedia.org/wiki/JSONP

63

Request

[https://\{server-url}/quota/{deviceId}
REQUEST PAYLOAD:NONE

JSON Response

{
 "deviceId":"258d5f5cf04446199f7b754c25dae257"
 "totalRequestToday": 5000,
 "maxReadRequestPerDay": 100000,
 "numberOfDataNodes": 5,
 "storageSize": 3072
}

XML Response

<quota>
 <totalDevices>3</totalDevices>
 <maxDeviceAllowed>5</maxDeviceAllowed>
 <maxDataNodePerDevice>10</maxDevicePerDataNode>
 <usedStorageSize>1048576</usedStorageSize>
 <maxStorageSize>52428800</maxStorageSize>
</quota>

Yliopistonranta 5

65200 Vaasa

+358 10 277
5000

support@iot-ticket.com

www.IoT-TICKET.com

mailto:Support@iot-ticket.com
http://www.IoT-TICKET.com

	IoT-TICKET REST API
	Introduction
	Abbreviations and definitions
	Data Model
	General information
	Communication Security
	Quota Policy

	Device Management
	Register a device
	Get devices
	Get a single device
	Get a device's datanode list
	Get a device's virtual data tag list
	Get data tag and device information with MID value
	Move device
	Delete device

	Reading and writing data
	Writing data
	Reading data
	Reading statistical data
	Datanode creation
	Example of a device with hierarchical components

	Enterprise management
	Get enterprises under an enterprise
	Create enterprise

	Reading events
	Read event history

	Dashboard management
	List dashboards
	List dashboard templates
	Create dashboard

	Error handling
	Quota Management
	Get overall quota
	Get device specific quota

